Expanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen of over 16,000 RNAi triggers against the SARS-CoV-2 genome, using a massively parallel assay to identify hyper-potent siRNAs. We selected Ten candidates for in vitro validation and found five siRNAs that exhibited hyper-potent activity (IC50 < 20 pM) and strong blockade of infectivity in live-virus experiments.
View Article and Find Full Text PDFExpanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen with over 16,000 RNAi triggers against the SARS-CoV-2 genome using a massively parallel assay to identify hyper-potent siRNAs. We selected 10 candidates for validation and found five siRNAs that exhibited hyper-potent activity with IC50<20pM and strong neutralisation in live virus experiments.
View Article and Find Full Text PDFReal-world healthcare data hold the potential to identify therapeutic solutions for progressive diseases by efficiently pinpointing safe and efficacious repurposing drug candidates. This approach circumvents key early clinical development challenges, particularly relevant for neurological diseases, concordant with the vision of the 21st Century Cures Act. However, to-date, these data have been utilized mainly for confirmatory purposes rather than as drug discovery engines.
View Article and Find Full Text PDFBackground: A growing number of clinical trials use various sensors and smartphone applications to collect data outside of the clinic or hospital, raising the question to what extent patients comply with the unique requirements of remote study protocols. Compliance is particularly important in conditions where patients are motorically and cognitively impaired. Here, we sought to understand patient compliance in digital trials of two such pathologies, Parkinson's disease (PD) and Huntington disease (HD).
View Article and Find Full Text PDFBackground: Huntington Disease (HD) is an incurable autosomal dominant neurodegenerative disorder driven by an expansion repeat giving rise to the mutant huntingtin protein (mHtt), which is known to disrupt a multitude of transcriptional pathways. Pridopidine, a small molecule in development for treatment of HD, has been shown to improve motor symptoms in HD patients. In HD animal models, pridopidine exerts neuroprotective effects and improves behavioral and motor functions.
View Article and Find Full Text PDFPridopidine is currently under clinical development for Huntington disease (HD), with on-going studies to better characterize its therapeutic benefit and mode of action. Pridopidine was administered either prior to the appearance of disease phenotypes or in advanced stages of disease in the YAC128 mouse model of HD. In the early treatment cohort, animals received 0, 10, or 30 mg/kg pridopidine for a period of 10.
View Article and Find Full Text PDFCopaxone (glatiramer acetate, GA), a structurally and compositionally complex polypeptide nonbiological drug, is an effective treatment for multiple sclerosis, with a well-established favorable safety profile. The short antigenic polypeptide sequences comprising therapeutically active epitopes in GA cannot be deciphered with state-of-the-art methods; and GA has no measurable pharmacokinetic profile and no validated pharmacodynamic markers. The study reported herein describes the use of orthogonal standard and high-resolution physicochemical and biological tests to characterize GA and a U.
View Article and Find Full Text PDFBackground: As part of the preparations to establish a population-based biobank in a large Israeli health organization, we aimed to investigate through focus groups the knowledge, perceptions and attitudes of insured Israelis, toward biobanking, and then, after input from focus groups' participants, to empirically assess the impact of a revised recruitment process on recruitment rates.
Methods: 1) Six Focus group discussions were conducted (n = 10 per group) with individuals who had routine blood laboratory tests taken in the last 2 years. 2) After addressing the issues raised in the focus groups and revising the recruitment process, individuals undergoing routine blood tests in phlebotomy clinics (N = 10,262) were invited to participate in the future biobank.
Background: Copaxone is an efficacious and safe therapy that has demonstrated clinical benefit for over two decades in patients with relapsing forms of multiple sclerosis (MS). On an individual level, patients show variability in their response to Copaxone, with some achieving significantly higher response levels. The involvement of genes (e.
View Article and Find Full Text PDFThe tri-nucleotide repeat expansion underlying Huntington disease (HD) results in corticostriatal synaptic dysfunction and subsequent neurodegeneration of striatal medium spiny neurons (MSNs). HD is a devastating autosomal dominant disease with no disease-modifying treatments. Pridopidine, a postulated "dopamine stabilizer", has been shown to improve motor symptoms in clinical trials of HD.
View Article and Find Full Text PDFLaquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington's disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice.
View Article and Find Full Text PDFPridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints in clinical trials. Originally described as a dopamine stabilizer, this mechanism is insufficient to explain the clinical and preclinical effects of pridopidine. This study therefore explored pridopidine's potential mechanisms of action.
View Article and Find Full Text PDFThe treatment of early Parkinson's disease with dopaminergic agents remains the mainstay of symptomatic therapy for this incurable neurodegenerative disorder. However, clinical responses to dopaminergic drugs vary substantially from person to person due to individual-, drug- and disease-related factors that may in part be genetically determined. Using clinical data and DNA samples ascertained through the largest placebo-controlled clinical trial of the monoamine oxidase B inhibitor, rasagiline (ClinicalTrials.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic, progressive, disabling disorder characterized by immune-mediated demyelination, inflammation, and neurodegenerative tissue damage in the central nervous system (CNS), associated with frequent exacerbations and remissions of neurologic symptoms and eventual permanent neurologic disability. While there are several MS therapies that are successful in reducing MS relapses, none have been effective in treating all patients. The specific response of an individual patient to any one of the MS therapies remains largely unpredictable, and physicians and patients are forced to use a trial and error approach when deciding on treatment regimens.
View Article and Find Full Text PDFThe secreted disulfide catalyst Quiescin sulfhydryl oxidase-1 (QSOX1) affects extracellular matrix organization and is overexpressed in various adenocarcinomas and associated stroma. Inhibition of extracellular human QSOX1 by a monoclonal antibody decreased tumor cell migration in a cell co-culture model and hence may have therapeutic potential. However, the species specificity of the QSOX1 monoclonal antibody has been a setback in assessing its utility as an anti-metastatic agent in vivo, a common problem in the antibody therapy industry.
View Article and Find Full Text PDFGlatiramer acetate (Copaxone®; GA) is a non-biological complex drug for multiple sclerosis. GA modulated thousands of genes in genome-wide expression studies conducted in THP-1 cells and mouse splenocytes. Comparing GA with differently-manufactured glatiramoid Polimunol (Synthon) in mice yielded hundreds of differentially expressed probesets, including biologically-relevant genes (e.
View Article and Find Full Text PDFThe ability to query enzyme molecules individually is transforming our view of catalytic mechanisms. Quiescin sulfhydryl oxidase (QSOX) is a multidomain catalyst of disulfide-bond formation that relays electrons from substrate cysteines through two redox-active sites to molecular oxygen. The chemical steps in electron transfer have been delineated, but the conformational changes accompanying these steps are poorly characterized.
View Article and Find Full Text PDFThioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange.
View Article and Find Full Text PDFQuiescin sulfhydryl oxidase 1 (QSOX1) is a catalyst of disulfide bond formation that undergoes regulated secretion from fibroblasts and is over-produced in adenocarcinomas and other cancers. We have recently shown that QSOX1 is required for incorporation of particular laminin isoforms into the extracellular matrix (ECM) of cultured fibroblasts and, as a consequence, for tumor cell adhesion to and penetration of the ECM. The known role of laminins in integrin-mediated cell survival and motility suggests that controlling QSOX1 activity may provide a novel means of combating metastatic disease.
View Article and Find Full Text PDFDisulfide bond formation in secretory proteins occurs primarily in the endoplasmic reticulum (ER), where multiple enzyme families catalyze cysteine cross-linking. Quiescin sulfhydryl oxidase 1 (QSOX1) is an atypical disulfide catalyst, localized to the Golgi apparatus or secreted from cells. We examined the physiological function for extracellular catalysis of de novo disulfide bond formation by QSOX1.
View Article and Find Full Text PDF