Publications by authors named "Iris Gratz"

T cells and structural cells coordinate appropriate inflammatory responses and restoration of barrier integrity following insult. Dysfunctional T cells precipitate skin pathology occurring alongside altered structural cell frequencies and transcriptional states, but to what extent different T cells promote disease-associated changes remains unclear. We show that functionally diverse circulating and skin-resident CD4CLA T cell populations promote distinct transcriptional outcomes in human keratinocytes and fibroblasts associated with inflamed or healthy tissue.

View Article and Find Full Text PDF

Introduction & Objective: Allergic sensitization is an essential step in the development of allergic airway inflammation to birch pollen (BP); however, this process remains to be fully elucidated. Recent scientific advances have highlighted the importance of the allergen context. In this regard, microbial patterns (PAMPs) present on BP have attracted increasing interest.

View Article and Find Full Text PDF

Genodermatoses represent a large group of inherited skin disorders encompassing clinically-heterogeneous conditions that manifest in the skin and other organs. Depending on disease variant, associated clinical manifestations and secondary complications can severely impact patients' quality of life and currently available treatments are transient and not curative. Multiple emerging approaches using CRISPR-based technologies offer promising prospects for therapy.

View Article and Find Full Text PDF

Immune tolerance is maintained in lymphoid organs (LOs). Despite the presence of complex immune cell networks in non-LOs, it is unknown whether self-tolerance is maintained in these tissues. We developed a technique to restrict genetic recombination to regulatory T cells (T) only in skin.

View Article and Find Full Text PDF

Darier disease (DD) is a rare, inherited multi-organ disorder associated with mutations in the ATP2A2 gene. DD patients often have skin involvement characterized by malodorous, inflamed skin and recurrent, severe infections. Therapeutic options are limited and inadequate for the long-term management of this chronic disease.

View Article and Find Full Text PDF

Junctional epidermolysis bullosa (JEB) is a severe blistering skin disease caused by mutations in genes encoding structural proteins essential for skin integrity. In this study, we developed a cell line suitable for gene expression studies of the JEB-associated encoding type XVII collagen (C17), a transmembrane protein involved in connecting basal keratinocytes to the underlying dermis of the skin. Using the CRISPR/Cas9 system of we fused the coding sequence of GFP to leading to the constitutive expression of GFP-C17 fusion proteins under the control of the endogenous promoter in human wild-type and JEB keratinocytes.

View Article and Find Full Text PDF

Peripheral immune cell infiltration into the brain is a prominent feature in aging and various neurodegenerative diseases such as Alzheimer's disease (AD). As AD progresses, CD8 T cells infiltrate into the brain parenchyma, where they tightly associate with neurons and microglia. The functional properties of CD8 T cells in the brain are largely unknown.

View Article and Find Full Text PDF

Viral antigens are among the strongest elicitors of immune responses. A significant proportion of the human population already carries pre-existing immunity against several childhood viruses, which could potentially be leveraged to fight cancer. We sought to provide proof of concept in mouse models that a pre-existing measles virus (MeV) immunity can be redirected to inhibit tumor growth by directly forcing expression of cognate antigens in the tumor.

View Article and Find Full Text PDF

Immune homeostasis in peripheral tissues is, to a large degree, maintained by the differentiation and action of regulatory T cells (Treg) specific for tissue Ags. Using a novel mouse model, we have studied the differentiation of naive CD4 T cells into Foxp3 Treg in response to a cutaneous Ag (OVA). We found that expression of OVA resulted in fatal autoimmunity and in prevention of peripheral Treg generation.

View Article and Find Full Text PDF

After activation, CD4 Th cells differentiate into functionally specialized populations that coordinate distinct immune responses and protect against different types of pathogens. In humans, these effector and memory Th cell subsets can be readily identified in peripheral blood based on their differential expression of chemokine receptors that govern their homeostatic and inflammatory trafficking. Foxp3 regulatory T (Treg) cells can also be divided into subsets that phenotypically mirror each of these effector populations and share expression of key transcription factors and effector cytokines.

View Article and Find Full Text PDF

Background: Helicobacter pylori (H. pylori) is a gram-negative bacterium that chronically infects approximately 50% of the world's human population. While in most cases the infection remains asymptomatic, 10% of infected individuals develop gastric pathologies and 1-3% progress to gastric cancer.

View Article and Find Full Text PDF

Human skin contains a population of memory T cells that supports tissue homeostasis and provides protective immunity. The study of human memory T cells is often restricted to in vitro studies and to human PBMC serving as primary cell source. Because the tissue environment impacts the phenotype and function of memory T cells, it is crucial to study these cells within their tissue.

View Article and Find Full Text PDF

Genetic activation of hedgehog/glioma-associated oncogene homolog (HH/GLI) signaling causes basal cell carcinoma (BCC), a very frequent nonmelanoma skin cancer. Small molecule targeting of the essential HH effector Smoothened (SMO) has proven an effective therapy of BCC, though the frequent development of drug resistance poses major challenges to anti-HH treatments. In light of recent breakthroughs in cancer immunotherapy, we analyzed the possible immunosuppressive mechanisms in HH/GLI-induced BCC in detail.

View Article and Find Full Text PDF

Tissue-resident memory T cells (T) persist locally in nonlymphoid tissues where they provide frontline defense against recurring insults. T at barrier surfaces express the markers CD103 and/or CD69, which function to retain them in epithelial tissues. In humans, neither the long-term migratory behavior of T nor their ability to reenter the circulation and potentially migrate to distant tissue sites has been investigated.

View Article and Find Full Text PDF

Migratory dendritic cell (DC) subsets deliver tissue Ags to draining lymph nodes (DLNs) to either initiate or inhibit T cell-mediated immune responses. The signals mediating DC migration in response to tissue self-antigen are largely unknown. Using a mouse model of inducible skin-specific self-antigen expression, we demonstrate that CD103 dermal DCs (DDCs) rapidly migrate from skin to skin DLN (SDLNs) within the first 48 h after Ag expression.

View Article and Find Full Text PDF

The skin hosts a variety of dendritic cells (DCs), which act as professional APC to control cutaneous immunity. Langerhans cells (LCs) are the only DC subset in the healthy epidermis. However, due to the complexity of the skin DC network, their relative contribution to either immune activation or immune tolerance is still not entirely understood.

View Article and Find Full Text PDF

Background: Immune checkpoint blockade is revolutionizing therapy for advanced cancer, but many patients do not respond to treatment. The identification of robust biomarkers that predict clinical response to specific checkpoint inhibitors is critical in order to stratify patients and to rationally select combinations in the context of an expanding array of therapeutic options.

Methods: We performed multiparameter flow cytometry on freshly isolated metastatic melanoma samples from 2 cohorts of 20 patients each prior to treatment and correlated the subsequent clinical response with the tumor immune phenotype.

View Article and Find Full Text PDF

The skin is a site of constant dialog between the immune system and commensal bacteria. However, the molecular mechanisms that allow us to tolerate the presence of skin commensals without eliciting destructive inflammation are unknown. Using a model system to study the antigen-specific response to S.

View Article and Find Full Text PDF

Foxp3(+) regulatory T cells (Treg cells) are essential for establishing and maintaining self-tolerance, and also inhibit immune responses to innocuous environmental antigens. Imbalances and dysfunction in Treg cells lead to a variety of immune-mediated diseases, as deficits in Treg cell function contribute to the development autoimmune disease and pathological tissue damage, whereas overabundance of Treg cells can promote chronic infection and tumorigenesis. Recent studies have highlighted the fact that Treg cells themselves are a diverse collection of phenotypically and functionally specialized populations, with distinct developmental origins, antigen-specificities, tissue-tropisms, and homeostatic requirements.

View Article and Find Full Text PDF

Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype.

View Article and Find Full Text PDF

Immune homeostasis in peripheral tissues is achieved by maintaining a balance between pathogenic effector T cells (Teffs) and protective Foxp3(+) regulatory T cells (Tregs). Using a mouse model of an inducible tissue Ag, we demonstrate that Ag persistence is a major determinant of the relative frequencies of Teffs and Tregs. Encounter of transferred naive CD4(+) T cells with transiently expressed tissue Ag leads to generation of cytokine-producing Teffs and peripheral Tregs.

View Article and Find Full Text PDF