Tendinopathy, a prevalent overuse injury, lacks effective treatment options, leading to a significant impact on quality of life and socioeconomic burden. Mesenchymal stem/stromal cells (MSCs) and their secretome, including conditioned medium (CM) and extracellular vesicles (EVs), have shown promise in tissue regeneration and immunomodulation. However, it remains unclear which components of the secretome contribute to their therapeutic effects.
View Article and Find Full Text PDFPrimary tenocytes rapidly undergo senescence and a phenotypic drift upon in vitro monolayer culture, which limits tendon research. The Ink4a/Arf locus encodes the proteins p16 and p14 (p19 in mice) that regulate cell cycle progression and senescence. We here established an immortalized cell line using tenocytes isolated from Ink4a/Arf deficient mice (Ink4a/Arf).
View Article and Find Full Text PDFBackground: Despite significant advancements in surgical techniques to repair rotator cuff (RC) injuries, failure rates remain high and novel approaches to adequately overcome the natural biological limits of tendon and enthesis regeneration of the RC are required. Small extracellular vesicles (sEVs) derived from the secretome of human multipotent mesenchymal stromal cells (MSCs) have been demonstrated to modulate inflammation and reduce fibrotic adhesions, and therefore their local application could improve outcomes after RC repair.
Purpose: In this pilot study, we evaluated the efficacy of clinical-grade human umbilical cord (hUC) MSC-derived sEVs (hUC-MSC-sEVs) loaded onto a type 1 collagen scaffold in an ovine model of acute infraspinatus tendon injury to improve RC healing.
Extracellular vesicles (EVs) are nanosized lipid bilayer-encapsulated particles secreted by virtually all cell types. EVs play an essential role in cellular crosstalk in health and disease. The cellular origin of EVs determines their composition and potential therapeutic effect.
View Article and Find Full Text PDF