The cultivation of medical cannabis ( L.) is expanding in controlled environments, driven by evolving governmental regulations for healthcare supply. Increasing inflorescence weight and plant specialized metabolite (PSM) concentrations is critical, alongside maintaining product consistency.
View Article and Find Full Text PDFIn controlled environment agriculture (CEA), light is used to impact terpenoid production and improve plant quality. In this review we discuss various aspects of light as important regulators of terpenoid production in different plant organs. Spectral quality primarily modifies terpenoid profiles, while intensity and photoperiod influence abundances.
View Article and Find Full Text PDFIn response to herbivory, Capsicum annuum leaves adapt their specialized metabolome that may protect the plant against herbivore feeding either directly or indirectly through volatile metabolites acting as cues for natural enemies of the herbivore. The volatile blend of spider-mite infested leaves differs from non-challenged leaves predominantly by a higher contribution of mono- and sesquiterpenes. In addition to these terpenoids released into the headspace, the terpenoid composition of the leaves alters upon herbivory.
View Article and Find Full Text PDFTo establish persistent infections in host plants, herbivorous invaders, such as root-knot nematodes, must rely on effectors for suppressing damage-induced jasmonate-dependent host defenses. However, at present, the effector mechanisms targeting the biosynthesis of biologically active jasmonates to avoid adverse host responses are unknown. Using yeast two-hybrid, in planta co-immunoprecipitation, and mutant analyses, we identified 12-oxophytodienoate reductase 2 (OPR2) as an important host target of the stylet-secreted effector MiMSP32 of the root-knot nematode Meloidogyne incognita.
View Article and Find Full Text PDFTerpenoids play important roles in flavour, pollinator attraction and defence of plants. In cucumber (Cucumis sativus) they are important components of the herbivore-induced plant volatile blend that attracts natural enemies of herbivores. We annotated the cucumber TERPENE SYNTHASE gene (CsTPS) family and characterized their involvement in the response towards herbivores with different feeding guilds using a combined molecular and biochemical approach.
View Article and Find Full Text PDFFor a first step integrating elicitor applications into the current IPM strategy increasing plant resilience against pests, we investigated repeated elicitor treatments in a strawberry everbearer nursery and cropping cycle under glass. During nursery methyl-jasmonate (MeJA), testing induction of defenses with plant bioassays was applied every 3 weeks. Thrips damage and reproduction by spider mites, whitefly and aphids were strongly reduced upon elicitor treatment.
View Article and Find Full Text PDFInduction of defenses is one of the most widely accepted eco-friendly approaches for management of pests and diseases. Seeds are receptive to resistance-inducing chemicals and could offer broad-spectrum protection at the early stages of development. However, seed treatment with elicitors has previously been shown to differentially influence induced defense responses among cultivars and thus, could hamper commercial exploitation.
View Article and Find Full Text PDFTo gain insight into the regulatory networks that underlie the induced defense in cucumber against spider mites, genes encoding transcription factors (TFs) were identified in the cucumber () genome and their regulation by two-spotted spider mite () herbivory was analyzed using RNA-seq. Of the total 1212 annotated TF genes in the cucumber genome, 119 were differentially regulated upon spider-mite herbivory during a period of 3 days. These TF genes belong to different categories but the , , and families had the highest relative numbers of differentially expressed genes.
View Article and Find Full Text PDFIn the above mentioned publication, part of Fig. 1b was distorted (48 h after TSSM Infestation). The original article has been corrected and the proper version of Fig.
View Article and Find Full Text PDFCucumber plants adapt their transcriptome and metabolome as result of spider mite infestation with opposite consequences for direct and indirect defences in two genotypes. Plants respond to arthropod attack with the rearrangement of their transcriptome which lead to subsequent phenotypic changes in the plants' metabolome. Here, we analysed transcriptomic and metabolite responses of two cucumber (Cucumis sativus) genotypes to chelicerate spider mites (Tetranychus urticae) during the first 3 days of infestation.
View Article and Find Full Text PDFPlants regulate responses towards herbivory through fine-tuning of defence-related hormone production, expression of defence genes, and production of secondary metabolites. Jasmonic acid (JA) plays a key role in plant-herbivorous arthropod interactions. To understand how pepper (Capsicum annuum) responds to herbivory, leaf transcriptomes and metabolomes of two genotypes different in their susceptibility to spider mites were studied.
View Article and Find Full Text PDFThe development of pesticide resistance in insects and recent bans on pesticides call for the identification of natural sources of resistance in crops. Here, we used natural variation in pepper (Capsicum spp.) resistance combined with an untargeted metabolomics approach to detect secondary metabolites related to thrips (Frankliniella occidentalis) resistance.
View Article and Find Full Text PDFThe concentration and ratio of terpenoids in the headspace volatile blend of plants have a fundamental role in the communication of plants and insects. The sesquiterpene (E)-nerolidol is one of the important volatiles with effect on beneficial carnivores for biologic pest management in the field. To optimize de novo biosynthesis and reliable and uniform emission of (E)-nerolidol, we engineered different steps of the (E)-nerolidol biosynthesis pathway in Arabidopsis thaliana.
View Article and Find Full Text PDFIn response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the plants with herbivorous spider mites (Tetranychus urticae) under greenhouse conditions.
View Article and Find Full Text PDFTo study whether natural variation in Arabidopsis thaliana could be used to dissect the genetic basis of responses to herbivory in terms of induced volatile emissions, nine accessions were characterized upon herbivory by biting-chewing Pieris rapae caterpillars or after treatment with the phytohormone jasmonic acid (JA). Analysis of 73 compounds in the headspace showed quantitative differences in the emission rates of several individual compounds among the accessions. Moreover, variation in the emission of volatile compounds after JA treatment was reflected in the behaviour of the parasitoid Diadegma semiclausum when they were offered the headspace volatiles of several combinations of accessions in two-choice experiments.
View Article and Find Full Text PDFCucumber plants (Cucumis sativus L.) respond to spider-mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid.
View Article and Find Full Text PDFHerbivore-damaged plants release complex mixtures of volatiles that attract natural enemies of the herbivore. To study the relevance of individual components of these mixtures for predator attraction, we manipulated herbivory-induced volatiles through genetic engineering. Metabolic engineering of terpenoids, which dominate the composition of many induced plant volatile bouquets, holds particular promise.
View Article and Find Full Text PDFMany plants have an indirect defense against herbivores by emitting volatiles that attract carnivorous enemies of the herbivores. In cucumber (Cucumis sativus) the production of carnivore attractants can be induced by herbivory or jasmonic acid spraying. From the leaves of cucumber plants with and without spider mite infestation, two subtractive cDNA libraries were made that were enriched in cDNA fragments up- or down-regulated by spider mite infestation.
View Article and Find Full Text PDF