Diverse forms of kin discrimination, broadly defined as alteration of social behavior as a function of genetic relatedness among interactants, are common among social organisms from microbes to humans. However, the evolutionary origins and causes of kin-discriminatory behavior remain largely obscure. One form of kin discrimination observed in microbes is the failure of genetically distinct colonies to merge freely upon encounter.
View Article and Find Full Text PDFModern evolutionary biology requires integrative approaches that combine life history, population structure, ecology, and development. The nematode Pristionchus pacificus has been established as a model system in which these aspects can be studied in one organism. P.
View Article and Find Full Text PDFEvolutionary reconstruction of the natural history of an organism ultimately requires knowledge about the development, population genetics, ecology, and phylogeny of the species. Such investigations would benefit from studies of mutational processes because mutations are the source of natural variation. The nematode Pristionchus pacificus has been developed as a model organism in evolutionary biology by comparing its development with Caenorhabditis elegans.
View Article and Find Full Text PDFHere we present a draft genome sequence of the nematode Pristionchus pacificus, a species that is associated with beetles and is used as a model system in evolutionary biology. With 169 Mb and 23,500 predicted protein-coding genes, the P. pacificus genome is larger than those of Caenorhabditis elegans and the human parasite Brugia malayi.
View Article and Find Full Text PDFNematodes and bacteria are major components of the soil ecosystem. Many nematodes use bacteria for food, whereas others evolved specialized bacterial interactions ranging from mutualism to parasitism. Little is known about the biological mechanisms by which nematode-bacterial interactions are achieved, largely because in the laboratory nematodes are often cultured under artificial conditions.
View Article and Find Full Text PDFPrecise characterization of the mutation histories of evolutionary lineages is crucial for understanding the evolutionary process, yet mutation identification has been constrained by traditional techniques. We sought to identify all accumulated mutations in an experimentally evolved lineage of the cooperative bacterium Myxococcus xanthus, which constructs fruiting bodies by a process of social multicellular development in response to starvation. This lineage had undergone two major transitions in social phenotype: from an ancestral cooperator to a socially defective cheater, and from the cheater to a competitively dominant cooperator that re-evolved social and developmental proficiency.
View Article and Find Full Text PDF