An essential prerequisite for the successful application of Si/SiO(2) nanostructures in photovoltaics is the realization of well-defined and abrupt interfaces with low densities of interface gap states. Here, a complete in situ process from preparation and hydrogen passivation to interface gap state analysis by near-UV photoelectron spectroscopy without breaking ultrahigh vacuum (UHV) conditions is introduced. It is demonstrated that by RF plasma oxidation of Si(111) substrates with thermalized neutral oxygen atoms, ultrathin SiO(2) layers can be realized with compositionally and structurally abrupt Si/SiO(2) interfaces and a minimal amount of intermediate oxidation states bridging the transition from Si to SiO(2).
View Article and Find Full Text PDF