Autophagy is the common name for a number of lysosome-based degradation pathways of cytosolic cargos. The key components of autophagy are members of Atg8 family proteins involved in almost all steps of the process, from autophagosome formation to their selective fusion with lysosomes. In this study, we show that the homologous members of the human Atg8 family proteins, LC3A and LC3B, are druggable by a small molecule inhibitor novobiocin.
View Article and Find Full Text PDFA short, efficient one-step synthesis of 2-methyl-5-(3-methyl-2-butenyl)-1,4-benzoquinone, a natural product from Pyrola media is described. The synthesis is based on a direct late C-H functionalization of the quinone scaffold. The formation of the natural product was confirmed by means of 2D-NMR spectroscopy.
View Article and Find Full Text PDFThyroid hormones (THs) operate numerous physiological processes through modulation of the nuclear thyroid hormone receptors and several other proteins. We report direct activation of the nuclear peroxisome proliferator-activated receptor gamma (PPARγ) and retinoid X receptor (RXR) by classical and nonclassical THs as another molecular activity of THs. The T4 metabolite TETRAC was the most active TH on PPARγ with nanomolar potency and binding affinity.
View Article and Find Full Text PDFNatural products (NPs) from microorganisms have been important sources for discovering new therapeutic and chemical entities. While their corresponding biosynthetic gene clusters (BGCs) can be easily identified by gene-sequence-similarity-based bioinformatics strategies, the actual access to these NPs for structure elucidation and bioactivity testing remains difficult. Deletion of the gene encoding the RNA chaperone, Hfq, results in strains losing the production of most NPs.
View Article and Find Full Text PDFPrevascularization of tissue constructs before implantation has been developed as a novel and promising concept for successful implantation. Since hypoxia might induce angiogenesis, we have investigated the effects of hypoxic treatment on vascularization by using co-cultures of primary human osteoblasts (POBs) and outgrowth endothelial cells. Our results show that: (a) repeated short-term hypoxia (2% O for 8 hr), not long-term hypoxia (2% O for 24 hr), over 1 or 2 weeks, significantly enhances microvessel formation in co-cultures; (b) sustained hypoxia, not short-term or long-term hypoxia, causes cytotoxicity in mono- and co-cultures; (c) the expression of some angiogenic and inflammatory factors such as vascular endothelial growth factor, platelet-derived growth factor subunit B, insulin-like growth factor 1, interleukin-8, and early growth response protein 1 increases significantly in hypoxia-treated POB monoculture and co-cultures after single or multiple 8- or 24-hr hypoxic treatments; (d) long-term (24 hr) hypoxic treatment induces more angiogenic inhibitors compared with short-term hypoxic treatment.
View Article and Find Full Text PDFThe process of angiogenesis is involved in several pathological conditions, such as tumor growth or age-related macular degeneration. Although the available anti-angiogenic drugs have improved the therapy of these diseases, major drawbacks, such as unwanted side effects and resistances, still exist. Consequently, the search for new anti-angiogenic substances is still ongoing.
View Article and Find Full Text PDFThe alkaloid narciclasine has been characterized extensively as an anticancer compound. Accumulating evidence suggests that narciclasine has anti-inflammatory potential; however, the underlying mechanism remains poorly understood. We hypothesized that narciclasine affects the activation of endothelial cells (ECs), a hallmark of inflammatory processes, which is a prerequisite for leukocyte-EC interaction.
View Article and Find Full Text PDFPatients diagnosed with osteosarcoma are currently treated with intravenous injections of anticancer agents after tumor resection. However, due to remaining neoplastic cells at the site of tumor removal, cancer recurrence often occurs. Successful bone regeneration combined with the control of residual cancer cells presents a challenge for tissue engineering.
View Article and Find Full Text PDFThe vacuolar-type H+-ATPase (v-ATPase) is the major proton pump that acidifies intracellular compartments of eukaryotic cells. Since the inhibition of v-ATPase resulted in anti-tumor and anti-metastatic effects in different tumor models, this enzyme has emerged as promising strategy against cancer. Here, we used the well-established v-ATPase inhibitor archazolid, a natural product first isolated from the myxobacterium Archangium gephyra, to study the consequences of v-ATPase inhibition in endothelial cells (ECs), in particular on the interaction between ECs and cancer cells, which has been neglected so far.
View Article and Find Full Text PDFThe enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far.
View Article and Find Full Text PDFMicrotubule-targeting agents (MTAs) are the most widely used chemotherapeutic drugs. Pretubulysin (PT), a biosynthetic precursor of the myxobacterial tubulysins, was recently identified as a novel MTA. Besides its strong anti-tumoral activities, PT attenuates tumor angiogenesis, exerts anti-vascular actions on tumor vessels and decreases cancer metastasis formation .
View Article and Find Full Text PDFThe production of natural product compound libraries has been observed in nature for different organisms such as bacteria, fungi and plants; however, little is known about the mechanisms generating such chemically diverse libraries. Here we report mechanisms leading to the biosynthesis of the chemically diverse rhabdopeptide/xenortide peptides (RXPs). They are exclusively present in entomopathogenic bacteria of the genera Photorhabdus and Xenorhabdus that live in symbiosis with nematodes delivering them to insect prey, which is killed and utilized for nutrition by both nematodes and bacteria.
View Article and Find Full Text PDFThe hawthorn ( spp.) extract WS 1442 is used against mild forms of chronic heart failure. This disease is associated with endothelial barrier dysfunction and edema formation.
View Article and Find Full Text PDFThe most frequently used parameters to describe the barrier properties of endothelial cells (ECs) in vitro are (i) the macromolecular permeability, indicating the flux of a macromolecular tracer across the endothelium, and (ii) electrical impedance of ECs grown on gold-film electrodes reporting on the cell layer's tightness for ion flow. Due to the experimental differences between these approaches, inconsistent observations have been described. Here, we present the first direct comparison of these assays applied to one single cell type (human microvascular ECs) under the same experimental conditions.
View Article and Find Full Text PDFBone tissue is a highly vascularized and dynamic system with a complex construction. In order to develop a construct for implant purposes in bone tissue engineering, a proper understanding of the complex dependencies between different cells and cell types would provide further insight into the highly regulated processes during bone repair, namely, angiogenesis and osteogenesis, and might result in sufficiently equipped constructs to be beneficial to patients and thereby accomplish their task. This study is based on an in vitro coculture model consisting of outgrowth endothelial cells and primary osteoblasts and is currently being used in different studies of bone repair processes with special regard to angiogenesis and osteogenesis.
View Article and Find Full Text PDF