Seasonal outbreaks of respiratory viral infections remain a global concern, with increasing morbidity and mortality rates recorded annually. Timely and false responses contribute to the widespread of respiratory pathogenic diseases owing to similar symptoms at an early stage and subclinical infection. The prevention of emerging novel viruses and variants is also a big challenge.
View Article and Find Full Text PDFNanoscale plasmonic hotspots play a critical role in the enhancement of molecular Raman signals, enabling the sensitive and reliable trace analysis of biomedical molecules via surface-enhanced Raman spectroscopy (SERS). However, effective and label-free SERS diagnoses in practical fields remain challenging because of clinical samples' random adsorption and size mismatch with the nanoscale hotspots. Herein, we suggest a novel SERS strategy for interior hotspots templated with protein@Au core-shell nanostructures prepared via electrochemical one-pot Au deposition.
View Article and Find Full Text PDFEngineering of interior hotspots provides a paradigm shift from traditional surface-enhanced Raman spectroscopy (SERS), in which the detection sensitivity depends on the positioning of adsorbed molecules. In the present work, we developed an Ag-Au bimetallic nanocomposite (SGBMNC) SERS platform with interior hotspots through facile chemical syntheses. Ag nanoparticles replaced by Au via the galvanic replacement reaction (GRR) provided hotspot regions inside the SGBMNC that remarkably enhanced the plasmonic activity compared to the conventional SERS platforms without the internal hotspots.
View Article and Find Full Text PDFThe sensitivity and limit-of-detection (LOD) of the traditional surface-enhanced Raman spectroscopy (SERS) platform suffer from the requirement of precise positioning of small analytes, including DNAs and bacteria, into narrow hotspots. In this study, a novel SERS sensor was developed using electrochemical deposition onto metal nanopillars (ECOMPs) combined with complementary DNAs (cDNAs) for the detection of pathogenic bacteria. Applying a redox potential to AuCl ions actively engineered the organometallic hotspots based on the cDNAs in a short time (<10 min) and simultaneously produced SERS signals.
View Article and Find Full Text PDFNanostructured materials offer the potential to drive future developments and applications of electrochemical devices, but are underutilized because their nanoscale cavities can impose mass transfer limitations that constrain electrochemical signal generation. Here, we report a new signal-generating mechanism that employs a molecular redox capacitor to enable nanostructured electrodes to amplify electrochemical signals even without an enhanced reactant mass transfer. The surface-tethered molecular redox capacitor engages diffusible reactants and products in redox-cycling reactions with the electrode.
View Article and Find Full Text PDF