Background: CD2-associated protein (CD2AP), a slit diaphragm-associated scaffolding protein involved in survival and regulation of the cytoskeleton in podocytes, is considered a "stabilizer" of the slit diaphragm complex that connects the slit diaphragm protein nephrin to the cytoskeleton of the cell. Tyrosine phosphorylation of slit diaphragm molecules can influence their surface expression, but it is unknown whether tyrosine phosphorylation events of CD2AP are also physiologically relevant to slit diaphragm stability.
Methods: We used isoelectric focusing, western blot analysis, and immunofluorescence to investigate phosphorylation of CD2AP, and phospho-CD2AP antibodies and site-directed mutagenesis to define the specific phosphorylated tyrosine residues.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. Podocytes are important for glomerular filtration barrier function and maintenance of size selectivity in protein filtration in the kidney. Podocyte damage is the basis of many glomerular diseases characterized by loss of interdigitating foot processes and decreased expression of components of the slit diaphragm.
View Article and Find Full Text PDFDysregulation of the actin cytoskeleton in podocytes represents a common pathway in the pathogenesis of proteinuria across a spectrum of chronic kidney diseases (CKD). The GTPase dynamin has been implicated in the maintenance of cellular architecture in podocytes through its direct interaction with actin. Furthermore, the propensity of dynamin to oligomerize into higher-order structures in an actin-dependent manner and to cross-link actin microfilaments into higher-order structures has been correlated with increased actin polymerization and global organization of the actin cytoskeleton in the cell.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
November 2014
The early glomerular changes in diabetes include a podocyte phenotype with loss of slit diaphragm proteins, changes in the actin cytoskeleton and foot process architecture. This review focuses on the role of the protein kinase C (PKC) family in podocytes and points out the differential roles of classical, novel, and atypical PKCs in podocytes. Some PKC isoforms are indispensable for proper glomerular development and slit diaphragm maintenance, whereas others might be harmful when activated in the diabetic milieu.
View Article and Find Full Text PDFPodocyte effacement and the reformation of foot processes and slit diaphragms can be induced within minutes experimentally. Therefore, it seems likely that the slit diaphragm proteins underlie orchestrated recycling mechanisms under the control of posttranslational modifiers. One of these modifiers, SUMO (small ubiquitin-like modifier), is an ubiquitin-like protein with a 20% corresponding identity to ubiquitin.
View Article and Find Full Text PDFFSGS is characterized by segmental scarring of the glomerulus and is a leading cause of kidney failure. Identification of genes causing FSGS has improved our understanding of disease mechanisms and points to defects in the glomerular epithelial cell, the podocyte, as a major factor in disease pathogenesis. Using a combination of genome-wide linkage studies and whole-exome sequencing in a kindred with familial FSGS, we identified a missense mutation R431C in anillin (ANLN), an F-actin binding cell cycle gene, as a cause of FSGS.
View Article and Find Full Text PDFThe atypical protein kinase C (aPKC) isotypes PKCλ/ι and PKCζ are both expressed in podocytes; however, little is known about differences in their function. Previous studies in mice have demonstrated that podocyte-specific loss of PKCλ/ι leads to a severe glomerular phenotype, whereas mice deficient in PKCζ develop no renal phenotype. We analyzed various effects caused by PKCλ/ι and PKCζ deficiency in cultured murine podocytes.
View Article and Find Full Text PDFRenal fibrosis is the major determinant in progression of acute and chronic kidney diseases. Transforming growth factor-β (TGF-β) has been shown to be an important mediator of progressive fibrosis. Several studies have implicated that TGF-β1 is involved in the tight balance of survival and apoptotic responses in podocytes that are Smad-dependent or independent.
View Article and Find Full Text PDFPodocytes are highly differentiated and polarized epithelial cells located on the visceral side of the glomerulus. They form an indispensable component of the glomerular filter, the slit diaphragm, formed by several transmembrane proteins and adaptor molecules. Disruption of the slit diaphragm can lead to massive proteinuria and nephrotic syndrome in mice and humans.
View Article and Find Full Text PDFBackground: Podocytes are highly specialized epithelial cells on the visceral side of the glomerulus. Their interdigitating primary and secondary foot processes contain an actin based contractile apparatus that can adjust to changes in the glomerular perfusion pressure. Thus, the dynamic regulation of actin bundles in the foot processes is critical for maintenance of a well functioning glomerular filtration barrier.
View Article and Find Full Text PDFPodocyte damage is the basis of many glomerular diseases with ultrastructural changes and decreased expression of components of the slit diaphragm such as nephrin and podocin. Under physiological conditions it is likely that the slit diaphragm underlies permanent renewal processes to indemnify its stability in response to changes in filtration pressure. This would require constant reorganization of the podocyte foot process and the renewal of slit diaphragm components.
View Article and Find Full Text PDFBackground: Microalbuminuria is an early lesion during the development of diabetic nephropathy. The loss of high molecular weight proteins in the urine is usually associated with decreased expression of slit diaphragm proteins. Nephrin, is the major component of the glomerular slit diaphragm and loss of nephrin has been well described in rodent models of experimental diabetes as well as in human diabetic nephropathy.
View Article and Find Full Text PDFCell Physiol Biochem
February 2010
Background: Progressive loss of podocytes has been documented as an early lesion in the development of glomerular disease. In a variety of glomerular diseases, including diabetic nephropathy the activation of transforming growth factor-beta (TGF-beta) has been demonstrated to promote podocyte death and the development of glomerulosclerosis. In this manuscript we analyzed the role of PKC-alpha (PKCalpha) on TGF-beta1 induced apoptosis in podocytes.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
December 2009
Podocytes are an important component of the glomerular filtration barrier and are the major source of vascular endothelial growth factor (VEGF) in the glomerulus. The role of VEGF for the phenotype of the glomerular endothelium has been intensely studied; however, the direct effects of autocrine VEGF on the podocyte are largely unknown. In this study we characterized the expression of VEGF isoforms and VEGF receptors in cultured human podocytes and examined direct effects on cell signaling and apoptosis after stimulation with exogenous VEGF or ablation of autocrine VEGF.
View Article and Find Full Text PDFObjective: Erythropoietin (EPO) has cytoprotective effects apart from its hematopoietic effects. We studied the effects of different EPO molecules on podocyte signaling in vitro and on podocyte survival in an experimental model of diabetic kidney injury (db/db mouse).
Methods: We elucidated intracellular signaling by epoetin-beta, darbepoetin-alpha, and the continuous erythropoietin receptor activator (CERA) in immortalized murine podocyte cultures.
Tyrosine phosphorylation of the cell cycle regulator p27(Kip1) plays a crucial role in its binding to cyclin dependent kinases and its subcellular localization. While Src and Bcr-Abl were shown to be responsible for tyrosine phosphorylation, no data are available on the dephosphorylation of p27(Kip1) and the phosphatase involved. Considering the associated dephosphorylation as a pivotal event in the regulation of cell cycle proteins, we focused on the tyrosine phosphatase SHP-2, which is regulated in promyelocytic leukemia cells on G-CSF stimulation.
View Article and Find Full Text PDFNephrol Dial Transplant
October 2008
Background: The detection of viable podocytes in the urine of patients with proteinuric diseases has been described as a non-invasive method to monitor disease activity. Most of the published studies use podocalyxin (PDX) as a podocyte specific marker.
Methods: We examined the excretion of viable PDX-positive cells in a random set of spot urine from patients with biopsy-proven focal segmental glomerulosclerosis (FSGS), membranous nephropathy (MGN) or membranoproliferative glomerulonephritis (MPGN) and characterized the excreted cells for podocyte and parietal epithelia markers as well as for proliferation activity.
Am J Physiol Renal Physiol
October 2007
Progressive tubulointerstitial fibrosis is the common end point leading to end-stage renal disease in experimental and clinical settings. Since the peptide hormone leptin is involved not only in the regulation of obesity but also in the regulation of inflammation and fibrosis, we tested the hypothesis whether leptin deficiency has an impact on tubulointerstitial fibrosis in mice. Leptin-deficient (ob/ob) and leptin receptor-deficient mice (db/db) were exposed to 14 days of unilateral ureteral obstruction (UUO).
View Article and Find Full Text PDFDefects in podocyte signaling are the basis of many inherited glomerular diseases leading to glomerulosclerosis. CD2-associated protein (CD2AP) is highly expressed in podocytes and is considered to play an important role in the maintenance of the glomerular slit diaphragm. Mice deficient for CD2AP (CD2AP(-/-)) appear normal at birth but develop a rapid onset nephrotic syndrome at 3 weeks of age.
View Article and Find Full Text PDFPodocyte apoptosis initiates progressive glomerulosclerosis in TGF-beta1 transgenic and CD2AP-knockout (CD2AP-/-) mice. It was previously shown that in both mouse models, activation of the TGF-beta pathway is the key event during development of podocyte apoptosis. Furthermore, CD2AP is an important modifier of TGF-beta-induced survival signaling via activation of the phosphoinositol 3-kinase/AKT signaling pathway.
View Article and Find Full Text PDF