Publications by authors named "Irineo Torres-Pacheco"

Article Synopsis
  • - Vascular wilt is a major disease impacting tomato yields globally, caused by a specific pathogen that has developed resilience against traditional management strategies due to its ability to persist in soil and invade vascular tissues.
  • - Current research is exploring plant defense mechanisms and the use of extracellular DNA (eDNA) to help tomatoes recognize and respond to disease, distinguishing between their own eDNA and that of pathogens.
  • - Findings indicate that applying the eDNA of the pathogen in soil can reduce disease severity in tomatoes, enhance certain beneficial compounds, and stimulate defense gene expression, suggesting it could be a viable strategy for managing vascular wilt.
View Article and Find Full Text PDF

Various environmental, food security and population health problems have been correlated with the use of intensive agriculture production systems around the world. This type of system leads to the loss of biodiversity and natural habitats, high usage rates of agrochemicals and natural resources, and affects soil composition, human health, and nutritional plant quality in rural areas. Agroecological intercropping systems that respect agrobiodiversity, on the other hand, can significantly benefit ecosystems, human health, and food security by modifying the nutritional profile and content of some health-promoting bioactive compounds in the species cultivated in this system.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of Zinc Oxide Nanoparticles (ZnO NPs) on the Pepper huasteco yellow vein virus (PHYVV), which causes significant losses in jalapeño pepper crops in Mexico.
  • Treatment with ZnO NPs showed promising results, significantly reducing symptoms and viral levels in pepper plants, especially at a concentration of 200 mM, with effects varying by treatment timing and pepper variety.
  • Findings hint that ZnO NPs enhance plant resistance by altering certain enzyme levels (POD, SOD, CAT, and PAL), highlighting the potential for using nanotechnology to manage viral infections in crops.
View Article and Find Full Text PDF

Common bean ( L.) is an important crop for food security and for national economics for several countries worldwide. One of the most important factors of risk in common bean production is the fungal disease anthracnose caused by , which, in some cases, causes complete yield losses; this kind of plant disease is usually managed through the application of chemical products such as fungicides that are commonly not accepted by society.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is an important molecule that regulates antioxidant responses that are crucial for plant stress resistance. Exposure to low levels of ultraviolet-B radiation (UV-B, 280-315 nm) can also activate antioxidant defenses and acclimation responses. However, how HO and UV-B interact to promote stress acclimation remains poorly understood.

View Article and Find Full Text PDF

Current research in basic and applied knowledge of plant science has aimed to unravel the role of the interaction between environmental factors and the genome in the physiology of plants to confer the ability to overcome challenges in a climate change scenario. Evidence shows that factors causing environmental stress (stressors), whether of biological, chemical, or physical origin, induce eustressing or distressing effects in plants depending on the dose. The latter suggests the induction of the "hormesis" phenomenon.

View Article and Find Full Text PDF

Precision agriculture has the objective of improving agricultural yields and minimizing costs by assisting management with the use of sensors, remote sensing, and information technologies. There are several approaches to improving crop yields where remote sensing has proven to be an important methodology to determine agricultural maps to show surface differences which may be associated with many phenomena. Remote sensing utilizes a wide variety of image sensors that range from common RGB cameras to sophisticated, hyper-spectral image cameras which acquire images from outside the visible electromagnetic spectrum.

View Article and Find Full Text PDF

Blackberry fruits are appreciated as a source of nutrients and compounds related to benefit human health. However, they are highly perishable and very susceptible to decay factors. Current methods to improve and maintain blackberry quality are limited in use because of the fruit's fragile physical properties.

View Article and Find Full Text PDF
Article Synopsis
  • Current agricultural practices for vegetable production are not sustainable, and some nanomaterials, like SBA-15 and SBA-16, show promise in enhancing plant growth and resilience in crops such as chili peppers.
  • The study investigated the effects of these two types of silica nanomaterials on chili pepper growth under varying concentrations, measuring impacts on seed germination, seedling height, growth performance, and cold tolerance.
  • Results revealed that SBA-15 significantly boosted seedling height and cold tolerance at specific concentrations, while SBA-16 negatively affected plant growth, indicating that the effectiveness of these nanomaterials depends on their morphology and application dosage without causing toxic effects.
View Article and Find Full Text PDF

Recently, deep-learning techniques have become the foundations for many breakthroughs in the automated identification of plant diseases. In the agricultural sector, many recent visual-computer approaches use deep-learning models. In this approach, a novel predictive analytics methodology to identify Tobacco Mosaic Virus (TMV) and Pepper Huasteco Yellow Vein Virus (PHYVV) visual symptoms on Jalapeño pepper ( L.

View Article and Find Full Text PDF

Agricultural systems face several challenges in terms of meeting everyday-growing quantities and qualities of food requirements. However, the ecological and social trade-offs for increasing agricultural production are high, therefore, more sustainable agricultural practices are desired. Researchers are currently working on diverse sustainable techniques based mostly on natural mechanisms that plants have developed along with their evolution.

View Article and Find Full Text PDF

At specific vibration frequencies like ones generated by insects such as caterpillar chewing and bee's buzz-pollination turn on the plants secondary metabolism and their respective pathways gets activated. Thus, studies report that vibrations and sound waves applied to plants improves their fitness performance. Commonly, acoustic treatments for plants have used arbitrarily random frequencies.

View Article and Find Full Text PDF

This research assesses the brain activity and visual performance at baseline and after light therapy (LTH), of seventeen patients with strabismus and amblyopia (SA), and eleven healthy controls (HCs) from Querétaro, México. Quantitative electroencephalogram analysis (qEEG) was used to record the brain activity, and clinical metrics such as the visual acuity, angle of deviation, phoria state, stereopsis, and visual fields determined the visual performance. Results showed a constant higher alpha-wave frequency for HCs.

View Article and Find Full Text PDF

Acclimation of plants to water deficit involves biochemical and physiological adjustments. Here, we studied how ultraviolet (UV)-B exposure and exogenously applied hydrogen peroxide (H O ) potentiates drought tolerance in tobacco (Nicotiana tabacum L. cv.

View Article and Find Full Text PDF

The need to produce food in a sustainable way to counteract the effects of excessive use of agrochemicals opens the door to the generation of new technologies that are not based on fossil fuels and are less toxic to ecosystems. Plant growth-promoting bacteria (PGPB) could represent an alternative to chemical biofertilizers and pesticides offering protection for biotic and abiotic stresses. In this work, a bacterial isolate from roots of castor bean () was identified and named as strain "Amazcala" (B.

View Article and Find Full Text PDF

Epigenetic regulation is a key component of stress responses, acclimatization and adaptation processes in plants. DNA methylation is a stable mark plausible for the inheritance of epigenetic traits, such that it is a potential scheme for plant breeding. However, the effect of modulators of stress responses, as hydrogen peroxide (HO), in the methylome status has not been elucidated.

View Article and Find Full Text PDF

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind-solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production.

View Article and Find Full Text PDF

In Mexico one in 14 deaths are caused by diabetes mellitus (DM) or by the macro and microvascular disorders derived from it. A continuous hyperglycemic state is characteristic of DM, resulting from a sustained state of insulin resistance and/or a dysfunction of β-pancreatic cells. is a little studied species showing a significant antioxidant activity that can be used as treatment of this disease or preventive against the complications.

View Article and Find Full Text PDF

It has been suggested that accumulation of flavonoids could be a key step in development of plant tolerance to different environmental stresses. Moreover, it has been recognized that abiotic stresses such as drought and UV-B radiation (280-315 nm) induce phenolic compound accumulation, suggesting a role for these compounds in drought tolerance. The aim of the present study was to evaluate the effect of UV-B exposure on chili pepper (Capsicum annuum, cv.

View Article and Find Full Text PDF

Over time plants developed complex mechanisms in order to adapt themselves to the environment. Plant innate immunity is one of the most important mechanisms for the environmental adaptation. A myriad of secondary metabolites with nutraceutical features are produced by the plant immune system in order to get adaptation to new environments that provoke stress (stressors).

View Article and Find Full Text PDF

Germin-like proteins (GLPs) are encoded by a family of genes found in all plants, and in terms of function, the GLPs are implicated in the response of plants to biotic and abiotic stresses. CchGLP is a gene encoding a GLP identified in a geminivirus-resistant Capsicum chinense Jacq accession named BG-3821, and it is important in geminivirus resistance when transferred to susceptible tobacco in transgenic experiments. To characterize the role of this GLP in geminivirus resistance in the original accession from which this gene was identified, this work aimed at demonstrating the possible role of CchGLP in resistance to geminiviruses in Capsicum chinense Jacq.

View Article and Find Full Text PDF

Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients.

View Article and Find Full Text PDF

Soil drought represents one of the most dangerous stresses for plants. It impacts the yield and quality of crops, and if it remains undetected for a long time, the entire crop could be lost. However, for some plants a certain amount of drought stress improves specific characteristics.

View Article and Find Full Text PDF

Nitrogen plays a key role in crop yields. Hence, farmers may apply excessive N fertilizers to crop fields, inducing environmental pollution. Crop N monitoring methods have been developed to improve N fertilizer management, most of them based on leaf or canopy optical-property measurements.

View Article and Find Full Text PDF

Low-temperature conditioning of garlic "seed" cloves accelerated the development of the crop cycle, decreased plant growth, and increased the synthesis of phenolic compounds and anthocyanins in the outer scale leaves of the bulbs at harvest time, leading to 3-fold content increase compared with those conditioned at room temperature. Cold conditioning of "seed" cloves also altered the anthocyanin profile during bulb development and at harvest. Two new anthocyanins are reported for the first time in garlic.

View Article and Find Full Text PDF