Publications by authors named "Irina Vvedenskaya"

Transcription start site (TSS) selection is a key step in gene expression and occurs at many promoter positions over a wide range of efficiencies. Here we develop a massively parallel reporter assay to quantitatively dissect contributions of promoter sequence, nucleoside triphosphate substrate levels and RNA polymerase II (Pol II) activity to TSS selection by 'promoter scanning' in Saccharomyces cerevisiae (Pol II MAssively Systematic Transcript End Readout, 'Pol II MASTER'). Using Pol II MASTER, we measure the efficiency of Pol II initiation at 1,000,000 individual TSS sequences in a defined promoter context.

View Article and Find Full Text PDF

XACT-seq ("crosslink between active-center and template sequencing") is a technique for high-throughput, single-nucleotide resolution mapping of RNA polymerase (RNAP) active-center positions relative to the DNA template. XACT-seq overcomes limitations of approaches that rely on analysis of the RNA 3' end (e.g.

View Article and Find Full Text PDF
Article Synopsis
  • - RNA polymerase II (Pol II) uses a unidirectional scanning process to select transcription start sites (TSSs) from a core promoter, initiating at sites roughly 40-120 bp downstream.
  • - Ssl2, a crucial component of the transcription factor TFIIH, influences the scanning process by its DNA-dependent ATPase activity, affecting both how far and how efficiently scanning occurs.
  • - Novel genetic alleles that alter conserved residues impact TSS selection by changing the distribution of TSSs, highlighting the interaction between scanning processivity and other initiation factors, ultimately shaping how Pol II and Ssl2/TFIIH collaborate in transcription initiation.
View Article and Find Full Text PDF

Chemical modifications of RNA 5'-ends enable "epitranscriptomic" regulation, influencing multiple aspects of RNA fate. In transcription initiation, a large inventory of substrates compete with nucleoside triphosphates for use as initiating entities, providing an ab initio mechanism for altering the RNA 5'-end. In cells, RNAs with a 5'-end hydroxyl are generated by use of dinucleotide RNAs as primers for transcription initiation, "primer-dependent initiation.

View Article and Find Full Text PDF

Pausing by RNA polymerase (RNAP) during transcription elongation, in which a translocating RNAP uses a "stepping" mechanism, has been studied extensively, but pausing by RNAP during initial transcription, in which a promoter-anchored RNAP uses a "scrunching" mechanism, has not. We report a method that directly defines the RNAP-active-center position relative to DNA with single-nucleotide resolution (XACT-seq; "crosslink-between-active-center-and-template sequencing"). We apply this method to detect and quantify pausing in initial transcription at 4 (∼4,000,000) promoter sequences in vivo in Escherichia coli.

View Article and Find Full Text PDF

Nucleoside-containing metabolites such as the oxidized and reduced forms of nicotinamide adenine dinucleotide (NAD and NADH), 3'-desphospho-coenzyme A (dpCoA), and flavin adenine dinucleotide (FAD) can be incorporated as RNA 5' end caps by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase. We recently reported ″CapZyme-seq,″ a 5'-RNA-seq method that enables the differential detection and quantitation of relative yields of NCIN-capped RNA and uncapped 5'-triphosphate RNA. Here we provide the protocol for constructing cDNA libraries for CapZyme-seq.

View Article and Find Full Text PDF
Article Synopsis
  • Eukaryotic promoters often have multiple transcription start sites (TSSs), and it's unclear how these are specified across species, particularly in yeast.
  • Researchers investigated the effects of altering polymerase II (Pol II) and general transcription factors (GTFs) on TSS usage in yeast, finding that changes widely impacted TSS distributions across different promoter classes.
  • The study supports a "scanning model," suggesting that Pol II activity and scanning rates, alongside promoter sequences, shape the landscape of TSS utilization in yeast, likening the process to a "shooting gallery."
View Article and Find Full Text PDF

Type I CRISPR-Cas loci provide prokaryotes with a nucleic-acid-based adaptive immunity against foreign DNA. Immunity involves adaptation, the integration of ~30-bp DNA fragments, termed prespacers, into the CRISPR array as spacers, and interference, the targeted degradation of DNA containing a protospacer. Interference-driven DNA degradation can be coupled with primed adaptation, in which spacers are acquired from DNA surrounding the targeted protospacer.

View Article and Find Full Text PDF
Article Synopsis
  • Mycobacterium tuberculosis can survive various stressors by adapting its physiology and entering a latent infection state.
  • A newly discovered toxin, MazF-mt9, works by cleaving specific tRNA, causing ribosomes to stall and trigger the degradation of certain mRNA transcripts.
  • This leads to a shift in protein synthesis, favoring the production of proteins that do not rely on the affected codons, potentially aiding the bacteria in surviving under stressful conditions.
View Article and Find Full Text PDF

A systems-level view of cellular gene expression requires understanding the mechanistic principles governing each step of transcription. In this chapter, we describe a massively multiplexed method for the analysis of the relationship between nucleic acid sequence and transcription termed "MASTER," for massively systematic transcript end readout. MASTER enables parallel measurements of transcription output from at least 4 (~1,000,000) individual template sequences in vitro and in vivo.

View Article and Find Full Text PDF

Nucleoside-containing metabolites such as NAD can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD capping by Escherichia coli RNAP for ∼16,000 promoter sequences.

View Article and Find Full Text PDF

During transcription initiation, RNA polymerase (RNAP) holoenzyme unwinds ∼13 bp of promoter DNA, forming an RNAP-promoter open complex (RPo) containing a single-stranded transcription bubble, and selects a template-strand nucleotide to serve as the transcription start site (TSS). In RPo, RNAP core enzyme makes sequence-specific protein-DNA interactions with the downstream part of the nontemplate strand of the transcription bubble ("core recognition element," CRE). Here, we investigated whether sequence-specific RNAP-CRE interactions affect TSS selection.

View Article and Find Full Text PDF

In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 4(10) promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems play key roles in bacterial persistence, biofilm formation and stress responses. The MazF toxin from the Escherichia coli mazEF TA system is a sequence- and single-strand-specific endoribonuclease, and many studies have led to the proposal that MazF family members exclusively target mRNA. However, recent data indicate some MazF toxins can cleave specific sites within rRNA in concert with mRNA.

View Article and Find Full Text PDF

We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield.

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are implicated in the downregulation of bacterial cell growth associated with stress survival and latent tuberculosis infection, yet the activities and intracellular targets of these TA toxins are largely uncharacterized. Here, we use a specialized RNA-seq approach to identify targets of a Mycobacterium tuberculosis VapC TA toxin, VapC-mt4 (also known as VapC4), which have eluded detection using conventional approaches. Distinct from the one other characterized VapC toxin in M.

View Article and Find Full Text PDF

Francisella tularensis is a Gram-negative bacterium whose ability to replicate within macrophages and cause disease is strictly dependent upon the coordinate activities of three transcription regulators called MglA, SspA, and PigR. MglA and SspA form a complex that associates with RNA polymerase (RNAP), whereas PigR is a putative DNA-binding protein that functions by contacting the MglA-SspA complex. Most transcription activators that bind the DNA are thought to occupy only those promoters whose activities they regulate.

View Article and Find Full Text PDF

We provide a detailed protocol for preparing cDNA libraries suitable for high-throughput sequencing that are derived specifically from the 5' ends of RNA (5' specific RNA-seq). The protocol describes how cDNA libraries for 5' specific RNA-seq can be tailored to analyze specific classes of RNAs based upon the phosphorylation status of the 5' end. Thus, the analysis of cDNA libraries generated by these methods provides information regarding both the sequence and phosphorylation status of the 5' ends of RNAs.

View Article and Find Full Text PDF

Transcription elongation is interrupted by sequences that inhibit nucleotide addition and cause RNA polymerase (RNAP) to pause. Here, by use of native elongating transcript sequencing (NET-seq) and a variant of NET-seq that enables analysis of mutant RNAP derivatives in merodiploid cells (mNET-seq), we analyze transcriptional pausing genome-wide in vivo in Escherichia coli. We identify a consensus pause-inducing sequence element, G₋₁₀Y₋₁G(+1) (where -1 corresponds to the position of the RNA 3' end).

View Article and Find Full Text PDF

Toxin-antitoxin (TA) systems are widespread in prokaryotes. Among these, the mazEF TA system encodes an endoribonucleolytic toxin, MazF, that inhibits growth by sequence-specific cleavage of single-stranded RNA. Defining the physiological targets of a MazF toxin first requires the identification of its cleavage specificity, yet the current toolkit is antiquated and limited.

View Article and Find Full Text PDF
Article Synopsis
  • Prokaryotic and eukaryotic RNA polymerases can initiate transcription using short RNA segments called nanoRNAs, which may influence gene expression and transcription start sites in living cells.
  • Researchers observed this phenomenon in E. coli, showing that the use of nanoRNAs changes based on the growth phase and affects gene expression.
  • Their work challenges the traditional view that all transcription starts solely with nucleoside triphosphates, revealing nanoRNAs as a new class of regulatory small RNAs that are directly integrated into transcripts.
View Article and Find Full Text PDF

It is often presumed that, in vivo, the initiation of RNA synthesis by DNA-dependent RNA polymerases occurs using NTPs alone. Here, using the model Gram-negative bacterium Pseudomonas aeruginosa, we demonstrate that depletion of the small-RNA-specific exonuclease, Oligoribonuclease, causes the accumulation of oligoribonucleotides 2 to ∼4 nt in length, "nanoRNAs," which serve as primers for transcription initiation at a significant fraction of promoters. Widespread use of nanoRNAs to prime transcription initiation is coupled with global alterations in gene expression.

View Article and Find Full Text PDF

Bacteriophages are bacterial viruses that infect bacterial cells, and they have developed ingenious mechanisms to modify the bacterial RNA polymerase. Using a rapid, specific, single-step affinity isolation procedure to purify Escherichia coli RNA polymerase from bacteriophage T4-infected cells, we have identified bacteriophage T4-dependent modifications of the host RNA polymerase. We suggest that this methodology is broadly applicable for the identification of bacteriophage-dependent alterations of the host synthesis machinery.

View Article and Find Full Text PDF

During transcription initiation by bacterial RNA polymerase, the sigma subunit recognizes the -35 and -10 promoter elements; free sigma, however, does not bind DNA. We selected ssDNA aptamers that strongly and specifically bound free sigma(A) from Thermus aquaticus. A consensus sequence, GTA(C/T)AATGGGA, was required for aptamer binding to sigma(A), with the TA(C/T)AAT segment making interactions similar to those made by the -10 promoter element (consensus sequence TATAAT) in the context of RNA polymerase holoenzyme.

View Article and Find Full Text PDF

Flavonoids were extracted from cranberry powder with acetone and ethyl acetate and subsequently fractionated with Sephadex LH-20 column chromatography. The fraction eluted with a 60% methanol solution was composed primarily of phenolic constituents with maximum absorbance at 340 nm. A high-performance liquid chromatography procedure was developed, which resolved 22 distinct peaks with UV/vis and mass spectra corresponding to flavonol glycoside conjugates.

View Article and Find Full Text PDF