The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology.
View Article and Find Full Text PDFThe water-selective channel aquaporin-4 (AQP4) is implicated in water homeostasis and the functioning of the glymphatic system, which eliminates various metabolites from the brain tissue, including amyloidogenic proteins. Misfolding of the α-synuclein protein and its post-translational modifications play a crucial role in the development of Parkinson's disease (PD) and other synucleopathies, leading to the formation of cytotoxic oligomers and aggregates that cause neurodegeneration. Human and animal studies have shown an interconnection between AQP4 dysfunction and α-synuclein accumulation; however, the specific role of AQP4 in these mechanisms remains unclear.
View Article and Find Full Text PDFThe molecular mechanisms of sleep cycle integration at the beginning and the end of the inactive period are not clear. Sleep cycles with a predominance of deep slow-wave sleep (SWS) seem to be associated with accelerated protein synthesis in the brain. The inducible Hsp70 chaperone corrects protein conformational changes and has protective properties.
View Article and Find Full Text PDFMolecular chaperone HSP70 (HSPA1A) has therapeutic potential in conformational neurological diseases. Here we evaluate the neuroprotective function of the chaperone in a rat model of Parkinson's disease (PD). We show that the knock-down of HSP70 (HSPA1A) in dopaminergic neurons of the Substantia nigra causes an almost 2-fold increase in neuronal death and multiple motor disturbances in animals.
View Article and Find Full Text PDFHeat shock protein 70 kDa (Hsp70) possesses a remarkable neuroprotective activity and the results of recent studies demonstrated its efficacy in the attenuation of epileptic seizures. The aim of this study was to explore the effects of a pure Hsp70/Hsc70 preparation delivered to the brain regions involved in generalized seizures induced in rats by intracerebroventricular microinjections of NMDA or systemic injections of pentylenetetrazole. Purified Hsp70/Hsc70 was administered (intracerebroventricular) 2 h before the induction of seizures.
View Article and Find Full Text PDF