Publications by authors named "Irina Tuszynska"

Ubiquitin-specific proteases (USPs) are the main members of deubiquitinases (DUBs) that catalyze removing ubiquitin chains from target proteins, thereby modulating their half-life and function. Enzymatic activity of USP21 regulates protein degradation which is critical for maintaining cell homeostasis. USP21 determines the stability of oncogenic proteins and therefore is implicated in carcinogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • This study evaluates six RNA 3D structure prediction methods, focusing on their ability to model RNA in small molecule complexes and specifically their accuracy in predicting ligand binding sites.
  • Machine learning methods excel in predicting overall RNA structures but struggle with local interactions, while traditional methods show greater accuracy in intramolecular interactions, particularly with secondary structures.
  • The introduction of AlphaFold 3 shows promising results but still faces challenges in accurately modeling binding sites; enhancing binding site prediction remains critical for effective RNA-small molecule interactions.
View Article and Find Full Text PDF

The interphase chromatin structure is extremely complex, precise and dynamic. Experimental methods can only show the frequency of interaction of the various parts of the chromatin. Therefore, it is extremely important to develop theoretical methods to predict the chromatin structure.

View Article and Find Full Text PDF

Motivation: Computational analysis of chromosomal contact data is currently gaining popularity with the rapid advance in experimental techniques providing access to a growing body of data. An important problem in this area is the identification of long range contacts between distinct chromatin regions. Such loops were shown to exist at different scales, either mediating relatively short range interactions between enhancers and promoters or providing interactions between much larger, distant chromosome domains.

View Article and Find Full Text PDF

Recent years have brought us great wealth of new types of experimental data on different aspects of chromatin state, from chromosome conformation assays, through super-resolution microscopic imaging to epigenetic modifications and lamina interaction assays. This rapid increase in data availability have motivated many novel approaches to 3D modeling of chromosomes, their conformations and dynamic behavior. Even though there are many tools already developed for molecular visualization in the field of structural bioinformatics, they are usually optimized for visualization of smaller molecules (like proteins) and much shorter trajectories.

View Article and Find Full Text PDF

In erythromycin-resistant bacteria, the N6 position of A2058 in 23S rRNA is mono- or dimethylated by Erm family methyltransferases. This modification results in cross-resistance to macrolides, lincosamides and streptogramin B. Most inhibitors of Erm methyltransferases developed up-to-date target the cofactor-binding pocket, resulting in a lack of selectivity whereas inhibitors that bind the substrate-binding pocket demonstrate low in vitro activity.

View Article and Find Full Text PDF

Endothelial cells (ECs) differentiate from mesodermal progenitors during vasculogenesis. By comparing changes in chromatin interactions between human umbilical vein ECs, embryonic stem cells and mesendoderm cells, we identified regions exhibiting EC-specific compartmentalization and changes in the degree of connectivity within topologically associated domains (TADs). These regions were characterized by EC-specific transcription, binding of lineage-determining transcription factors and cohesin.

View Article and Find Full Text PDF

A significant part of biology involves the formation of RNA-protein complexes. X-ray crystallography has added a few solved RNA-protein complexes to the repertoire; however, it remains challenging to capture these complexes and often only the unbound structures are available. This has inspired a growing interest in finding ways to predict these RNA-protein complexes.

View Article and Find Full Text PDF

Protein-RNA and protein-DNA interactions play fundamental roles in many biological processes. A detailed understanding of these interactions requires knowledge about protein-nucleic acid complex structures. Because the experimental determination of these complexes is time-consuming and perhaps futile in some instances, we have focused on computational docking methods starting from the separate structures.

View Article and Find Full Text PDF

Protein-RNA interactions play fundamental roles in many biological processes, such as regulation of gene expression, RNA splicing, and protein synthesis. The understanding of these processes improves as new structures of protein-RNA complexes are solved and the molecular details of interactions analyzed. However, experimental determination of protein-RNA complex structures by high-resolution methods is tedious and difficult.

View Article and Find Full Text PDF

Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA.

View Article and Find Full Text PDF

Methyltransferases (MTases) form a major class of tRNA-modifying enzymes needed for the proper functioning of tRNA. Recently, RNA MTases from the TrmN/Trm14 family that are present in Archaea, Bacteria and Eukaryota have been shown to specifically modify tRNA(Phe) at guanosine 6 in the tRNA acceptor stem. Here, we report the first X-ray crystal structures of the tRNA m(2)G6 (N(2)-methylguanosine) MTase (TTC)TrmN from Thermus thermophilus and its ortholog (Pf)Trm14 from Pyrococcus furiosus.

View Article and Find Full Text PDF

We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools.

View Article and Find Full Text PDF

Understanding the molecular mechanism of protein-RNA recognition and complex formation is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes by X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR) is tedious and difficult. Alternatively, protein-RNA interactions can be predicted by computational methods.

View Article and Find Full Text PDF

Background: Protein-RNA interactions play fundamental roles in many biological processes. Understanding the molecular mechanism of protein-RNA recognition and formation of protein-RNA complexes is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes is tedious and difficult, both by X-ray crystallography and NMR.

View Article and Find Full Text PDF

Summary: Automatic methods for macromolecular structure prediction (fold recognition, de novo folding and docking programs) produce large sets of alternative models. These large model sets often include many native-like structures, which are often scored as false positives. Such native-like models can be more easily identified based on data from experimental analyses used as structural restraints (e.

View Article and Find Full Text PDF

Several protein structures have been reported to contain intricate knots of the polypeptide backbone but the mechanism of the (un)folding process of knotted proteins remains unknown. The members of the SPOUT superfamily of RNA methyltransferases are some of the most intensely studied systems for investigation of the knot formation and function. YibK (whose biochemical function remains unknown) is the representative protein of the SPOUT superfamily.

View Article and Find Full Text PDF

Type-I DNA restriction-modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of base pairs away. Consisting of one specificity subunit, two modification subunits, and two DNA translocase/endonuclease subunits, EcoKI is inhibited by the T7 phage antirestriction protein ocr, a DNA mimic.

View Article and Find Full Text PDF

Motivation: Protein structure comparison is a fundamental problem in structural biology and bioinformatics. Two-dimensional maps of distances between residues in the structure contain sufficient information to restore the 3D representation, while maps of contacts reveal characteristic patterns of interactions between secondary and super-secondary structures and are very attractive for visual analysis. The overlap of 2D maps of two structures can be easily calculated, providing a sensitive measure of protein structure similarity.

View Article and Find Full Text PDF

The tRNA:m2(2)G10 methyltransferase of Pyrococus abyssi (PAB1283, a member of COG1041) catalyzes the N2,N2-dimethylation of guanosine at position 10 in tRNA. Boundaries of its THUMP (THioUridine synthases, RNA Methyltransferases and Pseudo-uridine synthases)--containing N-terminal domain [1-152] and C-terminal catalytic domain [157-329] were assessed by trypsin limited proteolysis. An inter-domain flexible region of at least six residues was revealed.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionu0qgh3k8ha41vi0bvg78o2asaobm3j0h): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once