Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues.
View Article and Find Full Text PDFTo develop safer retroviral murine leukemia virus (MLV)-based vectors, we previously mutated and re-engineered the MLV integrase: the W390A mutation abolished the interaction with its cellular tethering factors, BET proteins, and a retargeting peptide (the chromodomain of the CBX1 protein) was fused C-terminally. The resulting BET-independent MLV was shown to integrate efficiently and more randomly, away from typical retroviral markers. In this study, we assessed the functionality and stability of expression of the redistributed MLV vector in more depth, and evaluated safety using a clinically more relevant vector design encompassing a self-inactivated (SIN) LTR and a weak internal elongation factor 1α short (EFS) promoter.
View Article and Find Full Text PDFFibrosis and fat replacement in skeletal muscle are major complications that lead to a loss of mobility in chronic muscle disorders, such as muscular dystrophy. However, the in vivo properties of adipogenic stem and precursor cells remain unclear, mainly due to the high cell heterogeneity in skeletal muscles. Here, we use single-cell RNA sequencing to decomplexify interstitial cell populations in healthy and dystrophic skeletal muscles.
View Article and Find Full Text PDFTo fulfill a productive infection cycle the human immunodeficiency virus (HIV) relies on host-cell factors. Interference with these co-factors holds great promise in protecting cells against HIV infection. LEDGF/p75, encoded by the PSIP1 gene, is used by the integrase (IN) protein in the pre-integration complex of HIV to bind host-cell chromatin facilitating proviral integration.
View Article and Find Full Text PDFBrain injury following stroke affects neurogenesis in the adult mammalian brain. However, a complete understanding of the origin and fate of the endogenous neural stem cells (eNSCs) in vivo is missing. Tools and technology that allow non-invasive imaging and tracking of eNSCs in living animals will help to overcome this hurdle.
View Article and Find Full Text PDFBackground: In vivo overexpression of proteins is a powerful approach to study their biological function, generate disease models or evaluate gene therapy approaches. In order to investigate an exogenously expressed protein, specific and sensitive detection is essential. Unfortunately, antibodies that allow histological detection of the protein of interest are not always readily available.
View Article and Find Full Text PDFGene discovery and gene therapy call for advanced technologies to reliably assess gene expression; efficient coupling of gene expression to the expression of reporter genes is critical. Various noninvasive molecular imaging modalities have emerged to track biological processes in animal models. Here, we evaluate various strategies to link transgene expression with that of an (imaging) reporter gene.
View Article and Find Full Text PDFRecombinant adeno-associated virus serotype 2 (rAAV2) vectors have been shown to deliver genes effectively to neurons in the brain, retina, and spinal cord. The characterization of new AAV serotypes revealed different patterns of transduction in a diverse array of tissues (Gao, G., Vandenberghe, L.
View Article and Find Full Text PDF