The aim of the research was to study the distribution of gallium (Ga) in rhizosphere soil and in plants growing under natural conditions in uncontaminated sites, with an emphasis on temporal fluctuations of Ga concentration in plants. For this purpose, two field experiments were conducted in St. Petersburg, Russia, in 2019 and 2020, at two sites.
View Article and Find Full Text PDFBackground: The main aim of the research was to study short-term changes in the concentrations of elements in two widely distributed plant species, couch grass and nettle and in the rhizosphere soil of the plants.
Methods: The sampling of plants and soil was carried out on three dates: 3, 10, and 25 May 2021. On each day of sampling, the plants and soil were collected three times: at 9:00, 14:00, and 19:00.
Up to now, information about biogeochemistry of many trace elements is scarce. Meanwhile, all the elements are always present in soil and plants. It may be suggested that the trace elements also play certain role in the biogeochemical processes.
View Article and Find Full Text PDFEnviron Geochem Health
July 2021
Information about biological significance and possible phytotoxicity of many trace elements is still scarce. Bromine and neodymium are among the poorly investigated trace elements. In the research, greenhouse experiment was conducted to study the effects of bromide of neodymium on wheat seedlings grown in soil and water.
View Article and Find Full Text PDFEnviron Geochem Health
February 2022
Environmental pollution is becoming one of the most important global problems. Understanding the main factors affecting accumulation of toxic trace elements in consumed crops is of particular value. Unfortunately, possible toxicity of many trace elements is still poorly studied.
View Article and Find Full Text PDFEnviron Geochem Health
April 2021
There is no information yet about plant species capable of accumulating many different metals/metalloids. The plants feasible for phytoremediation aims must grow fast, have high biomass, deep roots, and should accumulate and tolerate a range of toxicants in their aerial parts. In our research, greenhouse and field experiments have been performed to investigate accumulation and tolerance of not well-studied trace elements such as Br, Eu, Sc, Th (and also U) in couch grass and wheat.
View Article and Find Full Text PDFThe aim of the research was to study short-term variations in concentrations of 17 elements in two widely distributed natural plant species (couch grass and plantain) and in the rhizosphere soil of the plants. The plant and soil samples were collected in a field from a small site over a daytime. In the course of the day, the variations of the total amounts of C, N, and H in the rhizosphere soil were rather marked and different for the soils taken from roots of plantain and couch grass.
View Article and Find Full Text PDFA field study was carried out to estimate the variations in the concentrations of macro- and trace elements in the rhizosphere soil and in roots and leaves of three widely distributed plant species-couch grass, plantain, and yarrow collected simultaneously from two sites characterized by different soil parameters. Main attention was paid to environmental (soil characteristics) and phylogenetic (plant species) factors that can influence on the concentrations of different elements in the plants and in soils. Both the factors cannot be considered as independent, although their contribution to the plant elemental composition may be different.
View Article and Find Full Text PDFThe aim of the research was to study a removal of polycyclic aromatic hydrocarbons (PAHs) and phytoextraction of bromine (Br) from contaminated soils. The experiments using pea and wheat seedlings as potential candidates for soil remediation were performed. The soil for the experiments was collected from a site slightly contaminated by some PAHs.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2015
Biogeochemical cycles of bromine (Br) and its quantitative requirements for different plant species are still studied poorly. There is a need to examine Br pathways in plants and evaluate the factors important for Br accumulation in a plant. In the present work, the effects of different Br compounds on an uptake of Br by two plant species (wheat and pea) that tolerate Br differently (pea is more sensitive to Br compared with wheat) have been studied.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2012
Purpose: The objectives of the research were to study how antimony (Sb) chemical form present in the growth medium can affect Sb uptake by plants and estimate effects of Sb on wheat and rye seedlings, in particular, assess variations in concentrations of nutrients resulting from bioaccumulation of Sb.
Methods: Seedlings were (1) germinated in media spiked with Sb(III) or Sb(V) and then transferred to clean water, and (2) germinated in Sb-free medium and then grown in water enriched with Sb. Variations of Sb concentrations in the seedlings were studied, and effects of Sb bioaccumulation on plant development and concentrations of macro- and trace elements in the plants were assessed.