The peptidoglycan (PG) cell wall is the primary protective layer of bacteria, making the process of PG synthesis a key antibiotic target. Class A penicillin-binding proteins (aPBPs) are a family of conserved and ubiquitous PG synthases that fortify and repair the PG matrix. In gram-negative bacteria, these enzymes are regulated by outer-membrane tethered lipoproteins.
View Article and Find Full Text PDFThe peptidoglycan (PG) cell wall is critical for bacterial growth and survival and is a primary antibiotic target. MreD is an essential accessory factor of the Rod complex, which carries out PG synthesis during elongation, yet little is known about how MreD facilitates this process. Here, we present the cryo-electron microscopy structure of MreD in complex with another essential Rod complex component, MreC.
View Article and Find Full Text PDFClass A penicillin-binding proteins (aPBPs) play critical roles in bacterial cell wall biogenesis. As the targets of penicillin, they are among the most important drug targets in history. Although the biochemical activities of these enzymes have been well studied, little is known about how they are regulated in cells to control when and where peptidoglycan is made.
View Article and Find Full Text PDFThe peptidoglycan (PG) cell wall protects bacteria against osmotic lysis and determines cell shape, making this structure a key antibiotic target. Peptidoglycan is a polymer of glycan chains connected by peptide crosslinks, and its synthesis requires precise spatiotemporal coordination between glycan polymerization and crosslinking. However, the molecular mechanism by which these reactions are initiated and coupled is unclear.
View Article and Find Full Text PDFIntracellular Ca signals control a wide array of cellular processes. These signals require spatial and temporal regulation of the intracellular Ca concentration, which is achieved in part by a class of ubiquitous membrane proteins known as sodium-calcium exchangers (NCXs). NCXs are secondary-active antiporters that power the translocation of Ca across the cell membrane by coupling it to the flux of Na in the opposite direction, down an electrochemical gradient.
View Article and Find Full Text PDF