Publications by authors named "Irina Semenova"

The Y-family DNA polymerases - Pol ι, Pol η, Pol κ and Rev1 - are most well-known for their roles in the DNA damage tolerance pathway of translesion synthesis (TLS). They function to overcome replication barriers by bypassing DNA damage lesions that cannot be normally replicated, allowing replication forks to continue without stalling. In this work, we demonstrate a novel interaction between each Y-family polymerase and the nucleotide excision repair (NER) proteins, RAD23A and RAD23B.

View Article and Find Full Text PDF
Article Synopsis
  • PML protein is crucial for how cells respond to oxidative stress, but its specific mechanism is not well understood.
  • Researchers found that the B-box1 domain of PML is more sensitive to oxidative changes compared to the RING domain.
  • This sensitivity enhances PML's ability to form nuclear bodies in cells, indicating B-box1 is a key player in detecting oxidative stress.
View Article and Find Full Text PDF

In this paper, the superplastic behavior of the two-phase titanium alloy VT6 with an ultrafine-grained (UFG) structure produced by equal-channel angular pressing is examined. The deformation of specimens with a UFG structure was performed by upsetting in a temperature range of 650-750 °C and strain rate range of 1 × 10-5 × 10 s. Under these conditions, an increased strain-rate sensitivity coefficient m was observed.

View Article and Find Full Text PDF

In this work, the strength properties and impact toughness of the ultrafine-grained (UFG) Ti-6Al-4V titanium alloy produced by severe plastic deformation (SPD) in combination with upsetting were studied, depending on the direction of crack propagation. In the billets processed by equal-channel angular pressing (ECAP), the presence of anisotropy of ultimate tensile strength (UTS) and ductility was observed, conditioned by the formation of a metallographic and crystallographic texture. At the same time, the ECAP-processed UFG alloy exhibited satisfactory values of impact toughness, ~0.

View Article and Find Full Text PDF

Wire arc additive manufacturing (AM) is able to replace the traditional manufacturing processes of Ti alloys. At the same time, the common drawback of Ti workpieces produced by AM via wire deposition welding is the formation of a coarse-grained dendritic structure, its strong anisotropy and, consequently, lower strength as compared to a monolithic alloy. In this work, a new method is proposed for the enhancement of the strength properties of the Ti-6Al-4V alloy synthesized by AM via wire deposition welding, which involves the use of a wire with an initial ultrafine-grained (UFG) structure.

View Article and Find Full Text PDF

We report measurements of linear and nonlinear elastic properties of polystyrene-based nanocomposites with six types of nanofillers, including single and binary mixtures of allotropic carbon nanoparticles. Composite samples were fabricated by the same technology and contained the same filler concentration (5% wt.), which allowed for a direct comparison of their properties.

View Article and Find Full Text PDF

At present, researchers pay great attention to the development of metastable β-titanium alloys. A task of current importance is the enhancement of their strength and fatigue properties. An efficient method for increasing the strength of such alloys could be severe plastic deformation.

View Article and Find Full Text PDF

The small, ubiquitin-like modifier SUMO is covalently attached to substrates by the enzyme UBC9. SUMO conjugation of substrates often requires an E3 ligase, which ensures substrate specificity by simultaneously binding UBC9 and the substrate. E3 SUMO ligases commonly use a RING domain to engage UBC9.

View Article and Find Full Text PDF

Introduction: Limited availability of individual standards is a bottleneck for quality control of functional foods and natural medicines. The use of standard mixtures or secondary standards is a possible alternative in this case. Earlier, an approach known as standardised reference extract (RE) strategy was introduced for HPLC-UV analysis of different plant materials; however, its application in HPLC-MS analysis has not been investigated.

View Article and Find Full Text PDF

In this report, we present implementation and validation of machine-learning classifiers for distinguishing between cell types (HeLa, A549, 3T3 cell lines) and states (live, necrosis, apoptosis) based on the analysis of optical parameters derived from cell phase images. Validation of the developed classifier shows the accuracy for distinguishing between the three cell types of about 93% and between different cell states of the same cell line of about 89%. In the field test of the developed algorithm, we demonstrate successful evaluation of the temporal dynamics of relative amounts of live, apoptotic and necrotic cells after photodynamic treatment at different doses.

View Article and Find Full Text PDF

We present results of experimental and theoretical studies of excited state dynamics in two alkyl derivatives of fluorescein, MitoFluo and C-Fl in solutions with liposomes. The liposomes DOPC and soybeanPC + 20% Cardiolipin (Azo-Cl), modelling cellular and inner mitochondrial membranes, respectively, were used in experiments. Both types of liposomes were shown to reduce significantly the fluorescence quantum yield as compared to that of pure fluorescein derivatives in solutions, while DOPC liposomes also caused a noticeable (ca 10 nm) red shift of fluorescence maximum.

View Article and Find Full Text PDF

The study focuses on a methodology providing noninvasive monitoring and evaluation of the antitumor effect of traditional Chinese medicine, cantharides complex (canth), on 4T1 breast tumor cells. Digital holographic tomography (DHT) and developed data post-processing algorithms were used for quantitative estimation of changes in optical and morphological parameters of cells. We calculated and compared data on the refractive index, thickness, and projected area of 4T1 breast tumor cells in control untreated specimens and those treated with doxorubicin hydrochloride (DOX), canth, and their combinations.

View Article and Find Full Text PDF

Free from toxic elements biomaterial potentially applicable for load bearing biomedical implants was obtained for the first time by laser cladding of S520 bioactive glass onto ultrafine-grained commercially pure titanium. The cladding process affected the refined structure of the substrate inducing martensitic transformation near its surface. The α' acicular martensite gradually passes into relatively large grains with increasing distance from the substrate surface, which subsequently are transformed into smaller grains of about 2 μm in diameter.

View Article and Find Full Text PDF

Microtubules (MTs) often form a polarized array with minus ends anchored at the centrosome and plus ends extended toward the cell margins. Plus ends display behavior known as dynamic instability-transitions between rapid shortening and slow growth. It is known that dynamic instability is regulated locally to ensure entry of MTs into nascent areas of the cytoplasm, but details of this regulation remain largely unknown.

View Article and Find Full Text PDF

The paper presents a comprehensive analysis of the elastic properties of polystyrene-based nanocomposites filled with different types of inclusions: small spherical particles (SiO and AlO), alumosilicates (montmorillonite, halloysite natural tubules and mica), and carbon nanofillers (carbon black and multi-walled carbon nanotubes). Block samples of composites with different filler concentrations were fabricated by melt technology, and their linear and non-linear elastic properties were studied. The introduction of more rigid particles led to a more profound increase in the elastic modulus of a composite, with the highest rise of about 80% obtained with carbon fillers.

View Article and Find Full Text PDF

Various substituted polycyclic pyrano[2,3-]pyrans were synthesized the condensation of 4-chromene-3-carbaldehydes and their areno-condensed analogues with hetero- and carbocyclic 1,3-dicarbonyl compounds in acetic acid. Ammonium acetate was used as a green catalyst for the reaction. The process also involves the subsequent Knoevenagel condensation and 6π-electrocyclization of the 1-oxatriene intermediates formed.

View Article and Find Full Text PDF

The commercially pure Ti (CP Ti) and equal-channel angular pressing (ECAP) processed Ti can contribute to the downsizing of medical devices with their superior mechanical properties and negligible toxicity. However, the ECAP-processed pure Ti has the risk of bacterial infection. Here, the coarse- and ultrafine-grained Ti substrates were surface-modified with molybdenum disulfide (MoS) to improve the cell proliferation and growth with antibacterial effect for further dental applications.

View Article and Find Full Text PDF

Microtubule (MT)-based transport can be regulated through changes in organization of MT transport tracks, but the mechanisms that regulate these changes are poorly understood. In melanophores, aggregation of pigment granules in the cell center involves their capture by the tips of MTs growing toward the cell periphery, and granule aggregation signals facilitate capture by increasing the number of growing MT tips. This increase could be explained by stimulation of MT nucleation either on the centrosome or on the aggregate of pigment granules that gradually forms in the cell center.

View Article and Find Full Text PDF

Bidirectional transport of membrane organelles along microtubules (MTs) is driven by plus-end directed kinesins and minus-end directed dynein bound to the same cargo. Activities of opposing MT motors produce bidirectional movement of membrane organelles and cytoplasmic particles along MT transport tracks. Directionality of MT-based transport might be controlled by a protein complex that determines which motor type is active at any given moment of time, or determined by the outcome of a tug-of-war between MT motors dragging cargo organelles in opposite directions.

View Article and Find Full Text PDF

Microtubule (MT)-based transport of organelles driven by the opposing MT motors kinesins and dynein is tightly regulated in cells, but the underlying molecular mechanisms remain largely unknown. Here we tested the regulation of MT transport by the ubiquitous protein MAP4 using Xenopus melanophores as an experimental system. In these cells, pigment granules (melanosomes) move along MTs to the cell center (aggregation) or to the periphery (dispersion) by means of cytoplasmic dynein and kinesin-2, respectively.

View Article and Find Full Text PDF

Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants.

View Article and Find Full Text PDF

Cytoplasmic microtubules (MTs) continuously grow and shorten at their free plus ends, a behavior that allows them to capture membrane organelles destined for MT minus end-directed transport. In Xenopus melanophores, the capture of pigment granules (melanosomes) involves the +TIP CLIP-170, which is enriched at growing MT plus ends. Here we used Xenopus melanophores to test whether signals that stimulate minus end MT transport also enhance CLIP-170-dependent binding of melanosomes to MT tips.

View Article and Find Full Text PDF

Microtubule (MT)-based organelle transport is driven by MT motor proteins that move cargoes toward MT minus-ends clustered in the cell center (dyneins) or plus-ends extended to the periphery (kinesins). Cells are able to rapidly switch the direction of transport in response to external cues, but the signaling events that control switching remain poorly understood. Here, we examined the signaling mechanism responsible for the rapid activation of dynein-dependent MT minus-end-directed pigment granule movement in Xenopus melanophores (pigment aggregation).

View Article and Find Full Text PDF

Microtubules (MTs) are cytoskeletal structures essential for cell division, locomotion, intracellular transport, and spatial organization of the cytoplasm. In most interphase cells, MTs are organized into a polarized radial array with minus-ends clustered at the centrosome and plus-ends extended to the cell periphery. This array directs transport of organelles driven by MT-based motor proteins that specifically move either to plus- or to minus-ends.

View Article and Find Full Text PDF