Doxorubicin (Dox) is a highly effective cytostatic antibiotic that exhibits activity against a wide range of malignant neoplasms and is often used as the basis of various anti-tumor compositions. However, the use of Dox in therapeutic doses is associated with high systemic toxicity, which makes it urgent to find ways to reduce therapeutic concentrations, which is necessary primarily to minimize the side effects on the patient's body, as well as to reduce the harmful effects on aquatic ecosystems, commonly polluted by toxic pharmaceuticals. Studying the self-organization, physicochemical and spectral patterns, and their relation to bioeffects of Dox solutions in the range of low concentrations can reveal useful insights into the unknown effects of Dox as a cytostatic and potential pollutant of ecosystems.
View Article and Find Full Text PDFAs shown by fluorescence monitoring of dissolved organic matter, amino acid -Trp can be present in natural water. The consequences of the presence of -Trp at low concentrations in surface water systems are not yet established for hydrobionts. Studying the physicochemical patterns, as well as their relationships to the bioeffects of -Trp solutions in the low concentration range, can provide new and important information regarding the unknown effects of -Trp.
View Article and Find Full Text PDFA variety of physicochemical methods were used to examine the self-organization, physicochemical, UV absorption, and fluorescent properties of diluted aqueous solutions (calculated concentrations from 1·10 to 1·10 M) of the membrane voltage-dependent potassium channels blocker 4-aminopyridine (4-AP). Using the dynamic light scattering method, it was shown that 4-AP solutions at concentrations in the range of 1·10-1·10 M are dispersed systems in which domains and nanoassociates of hundreds of nm in size are formed upon dilution. An interrelation between the non-monotonic concentration dependencies of the size of the dispersed phase, the fluorescence intensity ( 225 nm, 340 nm), specific electrical conductivity, and pH has been established.
View Article and Find Full Text PDFDiclofenac sodium (DS) is a widely used nonsteroidal anti-inflammatory drug (NSAIDs). NSAIDs are poorly removed during standard wastewater treatment. The consequences of the presence of NSAIDs in rivers and lakes at 10-10 mol/L are not yet established; therefore, ecotoxicologists have focused their efforts on studying the effect of low-concentration NSAIDs on fish and hydrobionts, and also on predicting the potential risks to humans.
View Article and Find Full Text PDFDiluted water solutions of anti-oxidant potassium phenosan, kept before explorations in "usual" conditions and in conditions of "permalloy container", i.e. shielding of solution from the influence of external low-frequency electromagnetic and/or geomagnetic fields, were studied.
View Article and Find Full Text PDFThe dependence of membrane function on its sterol component has been intensively studied with model lipids and isolated animal membranes, but to a much lesser extent with plant membranes. Depleting membrane sterols could be predicted to have a strong effect on membrane activity and have harmful physiological consequences. In this study, we characterized membrane lipid composition, membrane permeability for ions, some physiological parameters, such as H2O2 accumulation, formation of autophagosomal vacuoles, and expression of peroxidase and autophagic genes, and cell viability in the roots of wheat (Triticum aestivum L.
View Article and Find Full Text PDFPlant sterols are important multifunctional lipids, which are involved in determining membrane properties. Biophysical characteristics of model lipid and isolated animal membranes with altered sterol component have been intensively studied. In plants however, the precise mechanisms of involvement of sterols in membrane functioning remain unclear.
View Article and Find Full Text PDF