Publications by authors named "Irina Robu"

Biomolecular condensates present in cells can fundamentally affect the aggregation of amyloidogenic proteins and play a role in the regulation of this process. While liquid-liquid phase separation of amyloidogenic proteins by themselves can act as an alternative nucleation pathway, interaction of partly disordered aggregation-prone proteins with preexisting condensates that act as localization centers could be a far more general mechanism of altering their aggregation behavior. Here, we show that so-called host biomolecular condensates can both accelerate and slow down amyloid formation.

View Article and Find Full Text PDF
Article Synopsis
  • * The study reveals that these droplets can grow by synthesizing new material driven by specific fuels, and they do not experience Ostwald ripening thanks to attractive interactions within the droplets.
  • * Variations in environmental conditions and droplet composition, such as the addition of RNA, significantly impact the growth rates and overall fitness of these droplets, allowing them to serve as a model for studying cellular dynamics and population fitness.
View Article and Find Full Text PDF

Heparin has shown promise as a component of various biomaterial formulations, but its variable properties and inhibitory effects on some cell types have raised interest in use of dextran sulfate as an alternative. In this study, we characterized the interactions of vascular smooth muscle (SMC) and endothelial cells (EC) with heparin and dextran sulfate immobilized onto chitosan-based films. Films were modified by blending chitosan with type I collagen and covalently attaching heparin or dextran sulfate at various levels.

View Article and Find Full Text PDF

Reconstruction of critical size defects in the load-bearing area has long been a challenge in orthopaedics. In the past, we have demonstrated the feasibility of using a biodegradable load-sharing scaffold fabricated from poly(propylene fumarate)/tricalcium phosphate (PPF/TCP) loaded with bone morphogenetic protein-2 (BMP-2) to successfully induce healing in those defects. However, there is limited osteoconduction observed with the PPF/TCP scaffold itself.

View Article and Find Full Text PDF