A new biopreparation is developed to clean soils from oil pollution in the arid climate of the Republic of Kazakhstan. The biopreparation includes bacterial strains F2-1, F2-2, and BS3701. When using the biopreparation in a liquid mineral medium with 15% crude oil, laboratory studies have revealed degradation of 48% n-alkanes and 39% of PAHs after 50 days.
View Article and Find Full Text PDFThe aim of our study was to reveal the peculiarities of the adaptation of rhodococci to hydrophobic hydrocarbon degradation at low temperatures when the substrate was in solid states. The ability of actinobacteria (strains X5 and S67) to degrade hexadecane at 10 °C (solid hydrophobic substrate) and 26 °C (liquid hydrophobic substrate) is described. Despite the solid state of the hydrophobic substrate at 10 °C, bacteria demonstrate a high level of its degradation (30-40%) within 18 days.
View Article and Find Full Text PDFThe strain BS3701 was isolated from soil contaminated with coke by-product waste (Moscow Region, Russian Federation). It is capable of degrading crude oil and polycyclic aromatic hydrocarbons (PAHs). The BS3701 genome consists of a 6,337,358-bp circular chromosome and two circular plasmids (pBS1141 with 107,388 bp and pBS1142 with 54,501 bp).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2013
Production of D S-threo-isocitric acid (ICA) by yeast meets serious difficulties since it is accompanied by a simultaneous production of citric acid (CA) in significant amounts that reduces the yield of desired product. In order to develop an effective process of ICA production, 60 yeast strains of different genera (Candida, Pichia, Saccharomyces, Torulopsis, and Yarrowia) were tested for their ability to produce ICA from rapeseed oil; as a result, wild-type strain Yarrowia lipolytica VKM Y-2373 and its mutant Y. lipolytica 704-UV4-A/NG50 were selected as promising ICA producers.
View Article and Find Full Text PDF