Publications by authors named "Irina Proekt"

Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq) in profiling mouse autoantibodies. This library was validated using 7 genetically distinct mouse lines across a spectrum of autoreactivity.

View Article and Find Full Text PDF

Mutations in the gene encoding the zinc-finger transcription factor Ikaros () are found in patients with immunodeficiency, leukemia, and autoimmunity. Although Ikaros has a well-established function in modulating gene expression programs important for hematopoietic development, its role in other cell types is less well defined. Here, we uncover functions for Ikaros in thymic epithelial lineage development in mice and show that expression in medullary thymic epithelial cells (mTECs) is required for both autoimmune regulator-positive (Aire) mTEC development and tissue-specific antigen (TSA) gene expression.

View Article and Find Full Text PDF

Autoimmunity is characterized by loss of tolerance to tissue-specific as well as systemic antigens, resulting in complex autoantibody landscapes. Here, we introduce and extensively validate the performance characteristics of a murine proteome-wide library for phage display immunoprecipitation and sequencing (PhIP-seq), to profile mouse autoantibodies. This system and library were validated using seven genetic mouse models across a spectrum of autoreactivity.

View Article and Find Full Text PDF

Phage immunoprecipitation sequencing (PhIP-seq) allows for unbiased, proteome-wide autoantibody discovery across a variety of disease settings, with identification of disease-specific autoantigens providing new insight into previously poorly understood forms of immune dysregulation. Despite several successful implementations of PhIP-seq for autoantigen discovery, including our previous work (Vazquez et al., 2020), current protocols are inherently difficult to scale to accommodate large cohorts of cases and importantly, healthy controls.

View Article and Find Full Text PDF

The developmental programs that generate a broad repertoire of regulatory T cells (T cells) able to respond to both self antigens and non-self antigens remain unclear. Here we found that mature T cells were generated through two distinct developmental programs involving CD25 T cell progenitors (CD25 TP cells) and Foxp3 T cell progenitors (Foxp3 TP cells). CD25 TP cells showed higher rates of apoptosis and interacted with thymic self antigens with higher affinity than did Foxp3 TP cells, and had a T cell antigen receptor repertoire and transcriptome distinct from that of Foxp3 TP cells.

View Article and Find Full Text PDF

The thymus is responsible for generating a diverse yet self-tolerant pool of T cells. Although the thymic medulla consists mostly of developing and mature AIRE epithelial cells, recent evidence has suggested that there is far greater heterogeneity among medullary thymic epithelial cells than was previously thought. Here we describe in detail an epithelial subset that is remarkably similar to peripheral tuft cells that are found at mucosal barriers.

View Article and Find Full Text PDF

AIRE is a well-established master regulator of central tolerance. It plays an essential role in driving expression of tissue-specific antigens in the thymus and shaping the development of positively selected T-cells. Humans and mice with compromised or absent AIRE function have markedly variable phenotypes that include a range of autoimmune manifestations.

View Article and Find Full Text PDF

Studies of the genetic factors associated with human autoimmune disease suggest a multigenic origin of susceptibility; however, how these factors interact and through which tolerance pathways they operate generally remain to be defined. One key checkpoint occurs through the activity of the autoimmune regulator AIRE, which promotes central T cell tolerance. Recent reports have described a variety of dominant-negative AIRE mutations that likely contribute to human autoimmunity to a greater extent than previously thought.

View Article and Find Full Text PDF

Thymic central tolerance is essential to preventing autoimmunity. In medullary thymic epithelial cells (mTECs), the Autoimmune regulator (Aire) gene plays an essential role in this process by driving the expression of a diverse set of tissue-specific antigens (TSAs), which are presented and help tolerize self-reactive thymocytes. Interestingly, Aire has a highly tissue-restricted pattern of expression, with only mTECs and peripheral extrathymic Aire-expressing cells (eTACs) known to express detectable levels in adults.

View Article and Find Full Text PDF

Aire controls immunologic tolerance by inducing a battery of thymic transcripts encoding proteins characteristic of peripheral tissues. Its unusually broad effect is achieved by releasing RNA polymerase II paused just downstream of transcriptional start sites. We explored Aire's collaboration with the bromodomain-containing protein, Brd4, uncovering an astonishing correspondence between those genes induced by Aire and those inhibited by a small-molecule bromodomain blocker.

View Article and Find Full Text PDF

The Src-family tyrosine kinase Lyn negatively regulates BCR signaling and also myeloid cell activity. Mice deficient in Lyn have substantially decreased numbers of peripheral B cells, despite spontaneously producing IgG anti-DNA antibodies. Here, we examine the mechanism underlying the B-cell depletion in these mice.

View Article and Find Full Text PDF

Resting natural killer (NK) cells in nonobese diabetic (NOD) mice have impaired immune functions compared with NK cells from other mouse strains. Here we investigated how NOD NK cells respond after mouse cytomegalovirus (MCMV) infection, using NOD mice congenic for the protective NK gene complex from C57BL/6 mice. Compared with C57BL/6 mice congenic for the H2 gene complex from NOD mice (B6.

View Article and Find Full Text PDF

PU.1 is essential for early stages of mouse T cell development but antagonizes it if expressed constitutively. Two separable mechanisms are involved: attenuation and diversion.

View Article and Find Full Text PDF

Somatostatin inhibits adrenocorticotropin (ACTH) secretion from pituitary tumor cells. To assess the contribution of somatostatin receptor subtype 5 (SST5) to somatostatin receptor subtype 2 (SST2) action in these cells, we assessed multipathway responses to novel highly monoreceptor-selective peptide agonists and multireceptor agonists, including octreotide and somatostatin-28. Octreotide and somatostatin-28 cell membrane binding affinities correlated with their respective SST2-selective peptide ligand.

View Article and Find Full Text PDF