Publications by authors named "Irina Pozdnyakova"

Magnesium aluminates (MgO)(AlO) belong to a class of refractory materials with important applications in glass and glass-ceramic technologies. Typically, these materials are fabricated from high-temperature molten phases. However, due to the difficulties in making measurements at very high temperatures, information on liquid-state structure and properties is limited.

View Article and Find Full Text PDF

The human MASTL (Microtubule-associated serine/threonine kinase-like) gene encodes an essential protein in the cell cycle. MASTL is a key factor preventing early dephosphorylation of M-phase targets of Cdk1/CycB. Little is known about the mechanism of MASTL activation and regulation.

View Article and Find Full Text PDF

Type III CRISPR-Cas multisubunit complexes cleave ssRNA and ssDNA. These activities promote the generation of cyclic oligoadenylate (cOA), which activates associated CRISPR-Cas RNases from the Csm/Csx families, triggering a massive RNA decay to provide immunity from genetic invaders. Here we present the structure of Sulfolobus islandicus (Sis) Csx1-cOA complex revealing the allosteric activation of its RNase activity.

View Article and Find Full Text PDF

Tousled-like kinases (TLKs) are required for genome stability and normal development in numerous organisms and have been implicated in breast cancer and intellectual disability. In humans, the similar TLK1 and TLK2 interact with each other and TLK activity enhances ASF1 histone binding and is inhibited by the DNA damage response, although the molecular mechanisms of TLK regulation remain unclear. Here we describe the crystal structure of the TLK2 kinase domain.

View Article and Find Full Text PDF

PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins and characterization of 61 entities in total using a common set of analytical methods. Predictions of molecular size were typically accurate in comparison with actual size determined by size-exclusion chromatography (SEC) or dynamic light scattering (DLS).

View Article and Find Full Text PDF

Class switch recombination (CSR) diversifies antibodies for productive immune responses while maintaining stability of the B-cell genome. Transcription at the immunoglobulin heavy chain (Igh) locus targets CSR-associated DNA damage and is promoted by the BRCT domain-containing PTIP (Pax transactivation domain-interacting protein). Although PTIP is a unique component of the mixed-lineage leukemia 3 (MLL3)/MLL4 chromatin-modifying complex, the mechanisms for how PTIP promotes transcription remain unclear.

View Article and Find Full Text PDF

Intrinsically disordered proteins can phase separate from the soluble intracellular space, and tend to aggregate under pathological conditions. The physiological functions and molecular triggers of liquid demixing by phase separation are not well understood. Here we show in vitro and in vivo that the nucleic acid-mimicking biopolymer poly(ADP-ribose) (PAR) nucleates intracellular liquid demixing.

View Article and Find Full Text PDF

Background: Characterisation of the specific antibody response, including the epitope binding pattern, is an essential task for understanding the molecular mechanisms of food allergy. Examination of antibody formation in a controlled environment requires animal models. The purpose of this study was to examine the amount and types of antibodies raised against three cow's milk allergens; β-lactoglobulin (BLG), α-lactalbumin (ALA) and β-casein upon oral or intraperitoneal (i.

View Article and Find Full Text PDF

Streptococcus pyogenes is a significant bacterial pathogen in the human population. The importance of virulence factors for the survival and colonization of S. pyogenes is well established, and many of these factors are exposed to the extracellular environment, enabling bacterial interactions with the host.

View Article and Find Full Text PDF

The structure and thermal characteristics of aerodynamically levitated samples of yttria-alumina in the liquid, supercooled liquid and solid phases were explored in an extensive series of high energy x-ray diffraction, small angle neutron scattering, and pyrometric cooling measurements. Particular focus was placed on the compound (Y2O3)(x)(Al2O3)(1-x) with x = 0.2 for which a liquid-liquid phase transition at a temperature of 1788 K has recently been reported.

View Article and Find Full Text PDF

Enzymes catalyze biochemical reactions in highly crowded environments where the amount of macromolecules may occupy up to 40% of the volume. Here we report how cell-like conditions tune catalytic parameters for the monomeric multi-copper oxidase, Saccharomyces cerevisiae Fet3p, in vitro. At low amounts of crowding agent, we detect increases in both of K(M) (weaker substrate binding) and k(cat) (improved catalytic efficiency), whereas at higher crowding levels, both parameters were reduced.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers used x-ray absorption spectroscopy to analyze the short-range structure of liquid Al-Ni alloys, focusing on how temperature and composition affect it.
  • A containerless technique, which involves aerodynamic levitation and inductive heating, was employed to position and melt the alloy samples for accurate measurements.
  • Findings indicated that there are more heteroatomic pairs surrounding the scatterer in the alloy compared to a homogeneous alloy, suggesting a more complex structural arrangement.
View Article and Find Full Text PDF

Ovarian cancer is a leading cause of deaths, yet many aspects of the biology of the disease and a routine means of its detection are lacking. We have used protein microarrays and autoantibodies from cancer patients to identify proteins that are aberrantly expressed in ovarian tissue. Sera from 30 cancer patients and 30 healthy individuals were used to probe microarrays containing 5,005 human proteins.

View Article and Find Full Text PDF

Fragile X syndrome is the most common form of inherited mental retardation in humans, with an estimated prevalence of about 1 in 4000 males. Although several observations indicate that the absence of functional Fragile X Mental Retardation Protein (FMRP) is the underlying basis of Fragile X syndrome, the structure and function of FMRP are currently unknown. Here, we present an X-ray crystal structure of the tandem KH domains of human FMRP, which reveals the relative orientation of the KH1 and KH2 domains and the location of residue Ile304, whose mutation to Asn is associated with a particularly severe incidence of Fragile X syndrome.

View Article and Find Full Text PDF

Lack of functional Fragile X mental retardation protein (FMRP) is the primary cause of the Fragile-mental retardation syndrome in humans. In most cases, the disease results from transcriptional silencing of fragile mental retardation gene 1, fmr1, which encodes FMRP. However, a single missense mutation (I304N) in the second KH domain of FMRP gives rise to a particularly severe case of Fragile X syndrome.

View Article and Find Full Text PDF

Pseudomonas aeruginosa azurin binds copper so tightly that it remains bound even upon polypeptide unfolding. Copper can be substituted with zinc without change in protein structure, and also in this complex the metal remains bound upon protein unfolding. Previous work has shown that native-state copper ligands Cys112 and His117 are two of at least three metal ligands in the unfolded state.

View Article and Find Full Text PDF

Azurin is a blue-copper protein with a beta-barrel structure of Greek Key topology. In vitro, copper can be substituted with zinc without change in protein structure. We here analyze the kinetic folding behavior of zinc-substituted Pseudomonas aeruginosa azurin.

View Article and Find Full Text PDF

Pseudomonas aeruginosa azurin is a blue-copper protein with a beta-barrel fold. Here we report that, at conditions where thermal unfolding of apo-azurin is reversible, the reaction occurs in a single step with a transition midpoint (T(m)) of 69 degrees C (pH 7). The active-site mutation His117Gly creates a cavity in the beta-barrel near the surface but does not perturb the overall fold (T(m) of 64 degrees C, pH 7).

View Article and Find Full Text PDF

Pseudomonas aeruginosa azurin is a blue-copper protein with a Greek-key fold. Removal of copper produces an apoprotein with the same structure as holoazurin. To address the effects on thermodynamic stability and folding dynamics caused by small cavities in a beta-barrel, we have studied the behavior of the apo-forms of wild-type and two mutant (His-46-Gly and His-117-Gly) azurins.

View Article and Find Full Text PDF