Publications by authors named "Irina Petkova"

"Ecological intelligence" hypotheses posit that animal learning and memory evolve to meet the demands posed by foraging and, together with social intelligence and cognitive buffer hypotheses, provide a key framework for understanding cognitive evolution. However, identifying the critical environments where cognitive investment reaps significant benefits has proved challenging. Here, we capitalize upon seasonal variation in forage availability for a social insect model (Bombus terrestris audax) to establish how the benefits of short-term memory, assayed using a radial arm maze (RAM), vary with resource availability.

View Article and Find Full Text PDF

Among-individual behavioral differences (i.e. animal personality) are commonly observed across taxa, although the underlying, causal mechanisms of such differences are poorly understood.

View Article and Find Full Text PDF

Abstract: The existence of animal personality is now well-documented, although the causes and consequences of this phenomenon are still largely unclear. Parasite infection can have pervasive effects on hosts, including altering host behaviour, and may thus contribute to differences in host personality. We investigated the relationship between the three-spined stickleback and its common parasite , with focus on differences in host personality.

View Article and Find Full Text PDF

An efficient synthetic approach to a symmetrically functionalized tetrathiafulvalene (TTF) derivative with two diamine moieties, 2-[5,6-diamino-4,7-bis(4-pentylphenoxy)-1,3-benzodithiol-2-ylidene]-4,7-bis(4-pentylphenoxy)-1,3-benzodithiole-5,6-diamine (2), is reported. The subsequent Schiff-base reactions of 2 afford large π-conjugated multiple donor-acceptor (D-A) arrays, for example, the triad 2-[4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxalin-2-ylidene]-4,9-bis(4-pentylphenoxy)-1,3-dithiolo[4,5-g]quinoxaline (8) and the corresponding tetrabenz[bc,ef,hi,uv]ovalene-fused pentad 1, in good yields and high purity. The novel redox-active nanographene 1 is so far the largest known TTF-functionalized polycyclic aromatic hydrocarbon (PAH) with a well-resolved (1)H NMR spectrum.

View Article and Find Full Text PDF

The green-fluorescent protein of the jellyfish operates with the most powerful phenolate donors in the push-pull fluorophore. To nevertheless achieve red fluorescence with the same architecture, sea anemone and corals apply oxidative imination, a process that accounts for the chemistry of vision as well. The objective of this study was to apply these lessons from nature to one of the most compact family of panchromatic fluorophores, i.

View Article and Find Full Text PDF
Article Synopsis
  • Our research group studies how light can make electrons jump from one place to another, which is called photoinduced electron transfer.
  • We look at different experiments and examples to see how this process works.
  • This helps us understand more about how light and energy interact with materials.
View Article and Find Full Text PDF

The p53 tumour suppressor gene, the most frequently mutated gene in human cancer, encodes a transcription factor that contains sequence-specific DNA binding and homo-tetramerization domains. Interestingly, the affinities of p53 for specific and non-specific DNA sites differ by only one order of magnitude, making it hard to understand how this protein recognizes its specific DNA targets in vivo. We describe here the structure of a p53 polypeptide containing both the DNA binding and oligomerization domains in complex with DNA.

View Article and Find Full Text PDF

The photophysics and excited-state dynamics of two dyads consisting of either a free-base or a zinc-tetraphenylporphyrin linked through a rigid bridge to a core-substituted naphthalenediimide (NDI) have been investigated by femtosecond-resolved spectroscopy. The absorption and fluorescence spectra differ substantially from those of the individual units, pointing to a substantial coupling and to a delocalisation of the excitation over the whole molecule, as confirmed by quantum chemistry calculations. A strong dependence of their excited-state dynamics on the solvent polarity has been observed.

View Article and Find Full Text PDF

The excited-state dynamics of five derivatives of the GFP-chromophore, which differ by the position and nature of their substituents, has been investigated in solvents of various viscosity and polarity and in rigid media using femtosecond-resolved spectroscopy. In polar solvents of low viscosity, like acetonitrile or methanol, the fluorescence decays of all compounds are multiexponential, with average lifetimes of the order of a few picoseconds, whereas in rigid matrices (polymer films and low temperature glasses), they are single exponential with lifetimes of the order of a few nanoseconds and fluorescence quantum yields close to unity. Global analysis of the fluorescence decays recorded at several wavelengths and of the transient absorption spectra reveals the presence of several excited-state populations with slightly different fluorescence and absorption spectra and with distinct lifetimes.

View Article and Find Full Text PDF

The photophysical properties of two isomeric 2-(2'-pyridyl)benzindoles depend on the environment. Strong fluorescence is detected in nonpolar and polar aprotic solvents. In the presence of alcohols, the emission reveals an unusual behavior.

View Article and Find Full Text PDF

The steady-state and time-resolved fluorescence properties of the multitryptophan minimal subunit CaeSS2 from Carcinus aestuarii hemocyanin have been studied with the aim of probing the environment of the fluorophores within the protein matrix. Subunit a of Panulirus interruptus hemocyanin, whose X-ray structure is known, has been also studied. The results are compared with those collected with other two monomeric fractions (CaeSS1, CaeSS3) produced by dissociation of the native, oligomeric protein as well as with those of the hexameric aggregate.

View Article and Find Full Text PDF