Publications by authors named "Irina Paluy"

Iron-sulfur proteins are primordial catalysts and biological electron carriers that today drive major metabolic pathways across all forms of life. They can access a diversity of oxidation states and can mediate electron transfer over an extended range of reduction potentials spanning more than 1 V. Depending on the protein micro-environment and geometry of ligand, co-ordination the iron-sulfur clusters can occur in different forms [2Fe-2S], [3Fe-4S], HiPIP [4Fe-4S], and [4Fe-4S].

View Article and Find Full Text PDF

Iron-sulfur proteins are ubiquitous among all living organisms and are indispensable for almost all metabolic pathways ranging from photosynthesis, respiration, nitrogen, and carbon dioxide cycles. The iron-sulfur clusters primarily serve as electron acceptors and donors and transfer electrons to active sites of various enzymes, thus driving the energy metabolism. Prokaryotes like have ISC and SUF pathways that help in the assembly and maturation of iron-sulfur proteins.

View Article and Find Full Text PDF

Type-II water-soluble chlorophyll (Chl) proteins (WSCPs) of Brassicaceae are promising models for understanding how protein sequence and structure affect Chl binding and spectral tuning in photosynthetic Chl-protein complexes. However, to date, their use has been limited by the small number of known WSCPs, which also limited understanding their physiological roles. To overcome these limitations, we performed a phylogenetic analysis to compile a more comprehensive and complete set of natural type-II WSCP homologues.

View Article and Find Full Text PDF

Inulinases are fructofuranosyl hydrolases that target the β-2,1 linkage of inulin and hydrolyze it into fructose, glucose and inulooligosaccharides (IOS), the latter are of growing interest as dietary fibers. Inulinases from various microorganisms have been purified, characterized and produced for industrial applications. However, there remains a need for inulinases with increased catalytic activity and better production yields to improve the hydrolysis process and fulfill the growing industrial demands for specific fibers.

View Article and Find Full Text PDF