We report a study of solvent effects on the rate, selectivity, and mechanism of (hetero)aryl (pseudo)halide oxidative addition to Pd(PCy) as an exemplar of LPd(0) species. First, 2-chloro-3-aminopyridine is observed to undergo faster oxidative addition in toluene compared to more polar solvents, which is not consistent with the trend we observe with many other 2-halopyridines. We attribute this to solvent basicity hydrogen bonding between solvent and substrate.
View Article and Find Full Text PDFQuantitative molecular structure-reactivity models are useful for generating predictions to guide synthesis design, and in formulating and testing mechanistic hypotheses. We report an expanded multivariate linear regression (MLR) model for the rate of (hetero)aryl (pseudo)halide oxidative addition to LPd(0), here exemplified by Pd(PCy). This builds on a prior model from our group, with additional substrate classes (aryl chlorides and iodides) and reaction solvents (THF, toluene, THF/DMF mixture).
View Article and Find Full Text PDFCobaltcarbonyl--butylacetylene (CCTBA) is a conventional precursor for the selective atomic layer deposition of Co onto silicon surfaces. However, a limited understanding of the deposition mechanism of such cobalt precursors curbs rational improvements on their design for increased efficiency and tuneable selectivity. The impact of using a less reactive internal alkyne instead of a terminal alkyne was investigated using experimental and computational methods.
View Article and Find Full Text PDFWe report a multivariate linear regression model able to make accurate predictions for the relative rate and regioselectivity of nucleophilic aromatic substitution (SAr) reactions based on the electrophile structure. This model uses a diverse training/test set from experimentally-determined relative SAr rates between benzyl alcohol and 74 unique electrophiles, including heterocycles with multiple substitution patterns. There is a robust linear relationship between the experimental SAr free energies of activation and three molecular descriptors that can be obtained computationally: the electron affinity (EA) of the electrophile; the average molecular electrostatic potential (ESP) at the carbon undergoing substitution; and the sum of average ESP values for the and atoms relative to the reactive center.
View Article and Find Full Text PDFPerovskite quantum dots (PQDs) provide a robust solution-based approach to efficient solar cells, bright light emitting devices, and quantum sources of light. Quantifying heterogeneity and understanding coupling between dots is critical for these applications. We use double-nanohole optical trapping to size individual dots and correlate to emission energy shifts from quantum confinement.
View Article and Find Full Text PDFMaking accurate, quantitative predictions of chemical reactivity based on molecular structure is an unsolved problem in chemical synthesis, particularly for complex molecules. We report an approach to reactivity prediction for catalytic reactions based on quantitative structure-reactivity models for a key step common to many catalytic mechanisms. We demonstrate this approach with a mechanistically based model for the oxidative addition of (hetero)aryl electrophiles to palladium(0), which is a key step in myriad catalytic processes.
View Article and Find Full Text PDFCeramic materials such as metal oxides, mixed metal oxides and silicates, constitute a broadly-used, high-performance technology for electronic insulators. The introduction of metal cluster dopants and molecular-scale inclusions in a dielectric matrix provides an opportunity for manufacturing new high- solid-state dielectrics with tunable field-response properties. The quantum properties of these metallic nanoparticles depend strongly on their size and shape, a characteristic that can be exploited in changing the response properties of a material, whereas the small nanoparticle size can help limit the issues of conduction and current leakage.
View Article and Find Full Text PDFA new study by Yang and colleagues has revealed that TNF-alpha regulates PANX1 levels through an NF-kB-dependent mechanism in human endothelial cells. PANX1 modulates Ca influx contributing to IL-1beta production independent of purinergic signaling. These novel findings expand our understanding of TNF-alpha-mediated upregulation of IL-1beta with implications for responses to tissue injury and infection.
View Article and Find Full Text PDFZeise's salt, [PtCl (H C=CH )] is the oldest known organometallic complex, featuring ethylene strongly bound to a platinum salt. Many derivatives are known, but none involving dinitrogen, and indeed dinitrogen complexes are unknown for both platinum and palladium. Electrospray ionization mass spectrometry of K [PtCl ] solutions generate strong ions corresponding to [PtCl (N )] , the identity of which was confirmed through ion-mobility spectrometry and MS/MS experiments that proved it to be distinct from its isobaric counterparts [PtCl (C H )] and [PtCl (CO)] .
View Article and Find Full Text PDFAnalysis of highly reactive compounds at very low concentration in solution using electrospray ionization mass spectrometry requires the use of exhaustively purified solvents. It has generally been assumed that desolvation gas purity needs to be similarly high, and so most chemists working in this space have relied upon high purity gas. However, the increasing competitiveness of nitrogen generators, which provide gas purity levels that vary inversely with flow rate, prompted an investigation of the effect of gas-phase oxygen on the speciation of ions.
View Article and Find Full Text PDFPolycomb repressive complex 1 (PRC1) is critical for mediating gene expression during development. Five chromobox (CBX) homolog proteins, CBX2, CBX4, CBX6, CBX7, and CBX8, are incorporated into PRC1 complexes, where they mediate targeting to trimethylated lysine 27 of histone H3 (H3K27me3) the N-terminal chromodomain (ChD). Individual CBX paralogs have been implicated as drug targets in cancer; however, high similarities in sequence and structure among the CBX ChDs provide a major obstacle in developing selective CBX ChD inhibitors.
View Article and Find Full Text PDFEpigenetic regulation of gene expression is in part controlled by post-translational modifications on histone proteins. Histone methylation is a key epigenetic mark that controls gene transcription and repression. There are five human polycomb paralog proteins (Cbx2/4/6/7/8) that use their chromodomains to recognize trimethylated lysine 27 on histone 3 (H3K27me3).
View Article and Find Full Text PDFUsing existing and academically available software, we present a new method for the structural prediction of binding events containing flexible protein targets. SLICE (Selective Ligand-Induced Conformational Ensemble) combines opportunistic stochastic jumps of ligand position with standard molecular dynamics to model the induced-fit binding of ligands starting with unbound host coordinates. To induce the structural adaptations of the complex at the binding site, conformational jumps in ligand position are selected in SLICE from structures generated by a docking software.
View Article and Find Full Text PDFThe concept of plasmonic hotspots is central to the interpretation of the surface-enhanced Raman scattering (SERS) effect. Although plasmonic hotspots are generally portrayed as static features, single-molecule SERS (SM-SERS) is marked by characteristic time-dependent fluctuations in signal intensity. The origin of those fluctuations can be assigned to a variety of dynamic and complex processes, including molecular adsorption or desorption, surface diffusion, molecular reorientation and metal surface reconstruction.
View Article and Find Full Text PDFPhys Chem Chem Phys
May 2019
Helicenes are chiral polyaromatic hydrocarbon molecules which self-assemble into ordered monolayers on solid substrates, and are of current interest in the study of supramolecular systems and the development of smart materials. In this work we investigate the geometry of helicene monomers and stacked dimers on (111) facets of coinage metals. The geometry of the adsorbed molecules is shaped by the coupling of intermolecular dispersive forces, intramolecular steric repulsion between end rings and surface-molecule interactions.
View Article and Find Full Text PDFMaterials with high dielectric permittivity are highly desirable in the electronics industry. One avenue for enhancing the permittivity of standard metal oxide and ceramic dielectrics is to incorporate nanoscale Ag and Au inclusions in the material. Given the small scale of modern day devices, these inclusions will necessarily be up to a few nanometers in size.
View Article and Find Full Text PDFBackground: The adsorption of organic molecules on metal surfaces has a broad array of applications, from device engineering to medical diagnosis. The most extensively investigated class of metal-molecule complexes is the adsorption of thiols on gold.
Results: In the present manuscript, we investigate the dependence of methylthiol adsorption structures and energies on the degree of unsaturation at the metal binding site.
Phys Chem Chem Phys
March 2016
We investigate fundamental aspects of structure formation in molecular self-assembly, by examining the emergence of order upon adsorption of a series of model molecules. It is known that strongly polar diatomic molecules form three-dimensional crystals in the absence of a substrate. This tendency can be disrupted upon assembly on a solid surface, and various other types of order may arise.
View Article and Find Full Text PDFLysine is a ubiquitous residue on protein surfaces. Post translational modifications of lysine, including methylation to the mono-, di- or trimethylated amine result in chemical and structural alterations that have major consequences for protein interactions and signalling pathways. Small molecules that bind to methylated lysines are potential tools to modify such pathways.
View Article and Find Full Text PDFIn order to identify optimal conditions for singlet fission, we are examining the photophysics of 1,3-diphenylisobenzofuran (1) dimers covalently coupled in various ways. In the two dimers studied presently, the coupling is weak. The subunits are linked via the para position of one of the phenyl substituents, in one case (2) through a CH2 linker and in the other (3) directly, but with methyl substituents in ortho positions forcing a nearly perpendicular twist between the two joint phenyl rings.
View Article and Find Full Text PDFSingle crystal molecular structure and solution photophysical properties are reported for 1,3-diphenylisobenzofuran (1), of interest as a model compound in studies of singlet fission. For the ground state of 1 and of its radical cation (1(+*)) and anion (1(-*)), we report the UV-visible absorption spectra, and for neutral 1, also the magnetic circular dichroism (MCD) and the decomposition of the absorption spectrum into purely polarized components, deduced from fluorescence polarization. These results were used to identify a series of singlet excited states.
View Article and Find Full Text PDFSinglet exciton fission, a process that converts one singlet exciton to a pair of triplet excitons, has the potential to enhance the efficiency of both bulk heterojunction and dye-sensitized solar cells and is understood in crystals but not well understood in molecules. Previous studies have identified promising building blocks for singlet fission in molecular systems, but little work has investigated how these individual chromophores should be combined to maximize triplet yield. We consider the effects of chemically connecting two chromophores to create a coupled chromophore pair and compute how various structural choices alter the thermodynamic and kinetic parameters likely to control singlet fission yield.
View Article and Find Full Text PDF