Background: PROTEIN PHOSPHATASE 2A (PP2A) expression is crucial for the symbiotic association between plants and various microbes, and knowledge on these symbiotic processes is important for sustainable agriculture. Here we tested the hypothesis that PP2A regulatory subunits, especially B'φ and B'θ, are involved in signalling between plants and mycorrhizal fungi or plant-growth promoting bacteria.
Results: Treatment of tomato plants (Solanum lycopersicum) with the plant growth-promoting rhizobacteria (PGPR) Azospirillum brasilense and Pseudomonas simiae indicated a role for the PP2A B'θ subunit in responses to PGPR.
Plant growth-promoting rhizobacteria (PGPR) stimulate plant growth, but the underlying mechanism is poorly understood. In this study, we asked whether PROTEIN PHOSPHATASE 2A (PP2A), a regulatory molecular component of stress, growth, and developmental signaling networks in plants, contributes to the plant growth responses induced by the PGPR (wild type strain Sp245 and auxin deficient strain FAJ0009) and (WCS417r). The PGPR were co-cultivated with Arabidopsis wild type (WT) and PP2A (related) mutants.
View Article and Find Full Text PDFProtein phosphatase 2A catalytic subunit (PP2A-C) has a terminal leucine subjected to methylation, a regulatory mechanism conserved from yeast to mammals and plants. Two enzymes, LCMT1 and PME1, methylate and demethylate PP2A-C, respectively. The physiological importance of these posttranslational modifications is still enigmatic.
View Article and Find Full Text PDFPP2A catalytic subunit C2 is of special importance for light/dark regulation of nitrate reductase activity. The level of unmethylated PP2A catalytic subunits decreases in darkness. Protein phosphatase 2A (PP2A) dephosphorylates and activates nitrate reductase (NR) in photosynthetically active tissue when plants are transferred from darkness to light.
View Article and Find Full Text PDF