Wnt11 regulates early cardiac development and left ventricular compaction in the heart, but it is not known how Wnt11 regulates postnatal cardiac maturation and response to cardiac stress in the adult heart. We studied cell proliferation/maturation in postnatal and adolescent Wnt11 deficient (Wnt11-/-) heart and subjected adult mice with partial (Wnt11+/-) and complete Wnt11 (Wnt11-/-) deficiency to cardiac pressure overload. In addition, we subjected primary cardiomyocytes to recombinant Wnt proteins to study their effect on cardiomyocyte growth.
View Article and Find Full Text PDFCytosolic phosphoenolpyruvate carboxykinase (PEPCK-C) deficiency due to the homozygous PCK1 variant has recently been associated with childhood-onset hypoglycemia with a recognizable pattern of abnormal urine organic acids. In this study, 21 children and 3 adult patients with genetically confirmed PEPCK-C deficiency were diagnosed during the years 2016 to 2019 and the available biochemical and clinical data were collected. All patients were ethnic Finns.
View Article and Find Full Text PDFBackground: Wnt11 is a member of the Wnt family of secreted signals controlling the early steps in ureteric bud (UB) branching. Due to the reported lethality of Wnt11 knockout embryos in utero, its role in later mammalian kidney organogenesis remains open. The presence of Wnt11 in the emerging tubular system suggests that it may have certain roles later in the development of the epithelial ductal system.
View Article and Find Full Text PDFWnts are a family of secreted proteins that regulate multiple steps of neural development and stem cell differentiation. Two of them, Wnt1 and Wnt5a, activate distinct branches of Wnt signaling and individually regulate different aspects of midbrain dopaminergic (DA) neuron development. However, several of their functions and interactions remain to be elucidated.
View Article and Find Full Text PDFAims: The stage-dependent organization of the cardiomyocytes during formation of the different layers of the developing ventricular wall is critical for the establishment of a functional heart, but the instructive signals involved are still poorly known. We have addressed the potential role of Wnt-11 in the control of early ventricular myocardium assembly.
Methods And Results: We demonstrate by means of expression analysis and a mouse model in which Wnt-11 function has been inactivated that Wnt-11 is expressed by the embryonic ventricular cardiomyocytes and serves as one important signal for ventricular wall development.
The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical beta-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed.
View Article and Find Full Text PDF