Publications by authors named "Irina N Trofimova"

This review highlights the differential contributions of multiple neurochemical systems to temperament traits related and those that are unrelated to emotionality, even though these systems have a significant overlap. The difference in neurochemical biomarkers of these traits is analysed from the perspective of the neurochemical model, Functional Ensemble of Temperament (FET) that uses multi-marker and constructivism principles. Special attention is given to a differential contribution of hypothalamic-pituitary hormones and opioid neuropeptides implicated in both emotional and non-emotional regulation.

View Article and Find Full Text PDF

Temperament and mental illness have been linked to the same systems of behavioral regulation. A temperament model, carefully structured to respond to subtle differences within systems of behavior regulation, should exhibit distinct temperament patterns in the presence of mental illness. Previous comparisons of temperament profiles in mental disorders used mostly emotionality-related traits.

View Article and Find Full Text PDF

The Structure of Temperament Questionnaire (STQ) was proposed by Rusalov in 1989 and subsequently tested in five languages. The questionnaire assesses four temperamental traits (Ergonicity, Plasticity, Tempo, and Emotionality) in three separate areas of activity: physical, verbal-social, and intellectual. The scales are all activity-specific.

View Article and Find Full Text PDF

Cyclooxygenases-1 and -2 (Cox-1 and Cox-2) are two distinct isoforms that catalyze the conversion of arachidonic acid to prostaglandins. The role of Cox-2 in a variety of cancers is well recognized, but the contribution of Cox-1 remains much less explored. We have previously shown that human epithelial ovarian tumors have increased levels of Cox-1, but not Cox-2.

View Article and Find Full Text PDF

Ewing's sarcoma (EWS) cells contain levels of poly(ADP-ribose) polymerase (PARP) significantly higher than other eukaryotic cells. Previously, we cloned the PARP gene promoter region from EWS cells, showed that it contained multiple ETS-binding sites and demonstrated a positive regulation of PARP by ETS1. We now report that, contrary to ETS1, EWS/FLI-1, an aberrant ETS transcription factor present in most EWS cells, is a negative effector of PARP transcription.

View Article and Find Full Text PDF