Publications by authors named "Irina Mukhina"

Article Synopsis
  • Modern microtechnology enables the creation of chip-based neural networks with modular and hierarchical structures that mimic brain networks, providing a model for studying interactions and functionality.
  • A two-chamber microfluidic platform was utilized to assess functional connectivity and overall activity within these hierarchical modular neural networks.
  • Results indicated that both the strength of connections within modules and the nature of spontaneous activity influence how effectively modules interact and integrate, potentially leading to insights into function-structure relationships in neural networks in various health conditions.
View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a unique two-layer PDMS chip for researching the interaction between two connected neural networks, specifically using hippocampal neuron cultures.
  • The design of the microfluidic chip allows axons to grow primarily in one direction, creating two networks with unidirectional connectivity.
  • Findings reveal that manipulating the Source network's activity using chemical agents like TTX and CPP/CNQX affects the spiking activity of the Target network, highlighting the method's potential for examining complex neural interactions.
View Article and Find Full Text PDF

Background: Some individuals exhibit symptoms that resemble schizophrenia, but these manifestations are less in the degree to those seen in schizophrenia. Such a latent personality construct has been called schizotypy. It is known that schizotypal personality traits have an impact on cognitive control and semantic processing.

View Article and Find Full Text PDF

In recent years, much of the attention paid to theoretical and applied biomedicine, as well as neurobiology, has been drawn to various aspects of sexual dimorphism due to the differences that male and female brain cells demonstrate during aging: (a) a dimorphic pattern of response to therapy for neurodegenerative disorders, (b) different age of onset and different degrees of the prevalence of such disorders, and (c) differences in their symptomatic manifestations in men and women. The purpose of this review is to outline the genetic and epigenetic differences in brain cells during aging in males and females. As a result, we hereby show that the presence of brain aging patterns in males and females is due to a complex of factors associated with the effects of sex chromosomes, which subsequently entails a change in signal cascades in somatic cells.

View Article and Find Full Text PDF

Oscillation of intracellular calcium concentration is a stable phenomenon that affects cellular function throughout the lifetime of both electrically excitable and non-excitable cells. Nitric oxide, a gaseous secondary messenger and the product of nitric oxide synthase (NOS), affects intracellular calcium dynamics. Using mouse hippocampal primary cultures, we recorded the effect of NOS blockade on neuronal spontaneous calcium activity.

View Article and Find Full Text PDF

Acute lung injury (ALI) as a model of acute respiratory distress syndrome is characterized by inflammation, complex coagulation, and hematologic abnormalities which result in the formation of fibrin-platelet microthrombi in the pulmonary vessels with the rapid development of progressive respiratory dysfunction. We hypothesize that a nebulized fibrinolytic agent, non-immunogenic staphylokinase (nSta), may be useful for ALI therapy. First, the effect of the nebulized nSta (0.

View Article and Find Full Text PDF

Calcium is one of the most vital intracellular secondary messengers that tightly regulates a variety of cell physiology processes, especially in the brain. Using a fluorescent Ca-sensitive Oregon Green probe, we revealed three different amplitude distributions of spontaneous Ca events (SCEs) in neurons between 15 and 26 days in vitro (DIV) culture maturation. We detected a series of amplitude events: micro amplitude SCE (microSCE) 25% increase from the baseline, intermediate amplitude SCE (interSCE) as 25-75%, and macro amplitude SCE (macroSCE) - over 75%.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is a common clinical problem, leading to significant morbidity and mortality, and no effective pharmacotherapy exists. The problem of ARDS causing mortality became more apparent during the COVID-19 pandemic. Biotherapeutic products containing multipotent mesenchymal stromal cell (MMSC) secretome may provide a new therapeutic paradigm for human healthcare due to their immunomodulating and regenerative abilities.

View Article and Find Full Text PDF

Background: There is a need for better strategies to promote burn wound healing and prevent infection. The aim of our study was to develop an easy-to-use placental multipotent mesenchymal stromal cell (MMSC) secretome-based chitosan hydrogel (MSC-Ch-gel) and estimate its antimicrobial and regenerative activity in -infected burn wounds in rats.

Methods: Proteomic studies of the MMSC secretome revealed proteins involved in regeneration, angiogenesis, and defence responses.

View Article and Find Full Text PDF

The structured organization of connectivity in neural networks is associated with highly efficient information propagation and processing in the brain, in contrast with disordered homogeneous network architectures. Using microfluidic methods, we engineered modular networks of cultures using dissociated cells with unidirectional synaptic connections formed by asymmetric microchannels. The complexity of the microchannel geometry defined the strength of the synaptic connectivity and the properties of spiking activity propagation.

View Article and Find Full Text PDF

In neuroscience, much attention is paid to intercellular interactions, in particular, to synapses. However, many researchers do not pay due attention to the contribution of intracellular contacts to the work of intercellular interactions. Nevertheless, along with synapses, intracellular contacts also have complex organization and a tremendous number of regulatory elements.

View Article and Find Full Text PDF

Background: Ventricular fibrillation is an electrophysiological disorder leading to cardiac arrest that can be caused using chemicals. The 2-aminoethoxydiphenyl borate (2-apb) is a poorly understood compound that modulates store operated calcium entry and gap junctions and can provoke ventricular fibrillation. Our study aimed to investigate the effect of 2-apb on the work of an isolated rat heart and coronary vessels under normoxic conditions, as well as under conditions of hypoxia/reoxygenation, that affect intracellular calcium.

View Article and Find Full Text PDF

The aim of the present study was to evaluate the current body of knowledge regarding tumor-associated macrophages (TAMs) and their potential use in antitumor therapy, based on their role in the pathological process of tumorigenesis. For this purpose, a critical analysis of published data and summarization of the findings available from original studies, focusing on the role of TAMs in the pathological process, and their potential therapeutic application was performed. Promising key avenues of research were identified in this field.

View Article and Find Full Text PDF

Here we provide a perspective concept of neurohybrid memristive chip based on the combination of living neural networks cultivated in microfluidic/microelectrode system, metal-oxide memristive devices or arrays integrated with mixed-signal CMOS layer to control the analog memristive circuits, process the decoded information, and arrange a feedback stimulation of biological culture as parts of a bidirectional neurointerface. Our main focus is on the state-of-the-art approaches for cultivation and spatial ordering of the network of dissociated hippocampal neuron cells, fabrication of a large-scale cross-bar array of memristive devices tailored using device engineering, resistive state programming, or non-linear dynamics, as well as hardware implementation of spiking neural networks (SNNs) based on the arrays of memristive devices and integrated CMOS electronics. The concept represents an example of a brain-on-chip system belonging to a more general class of memristive neurohybrid systems for a new-generation robotics, artificial intelligence, and personalized medicine, discussed in the framework of the proposed roadmap for the next decade period.

View Article and Find Full Text PDF

It is well-known that hyaluronic acid (HA) as a component of brain extracellular matrix (ECM) plays a pivotal role in the nervous system and is involved in synaptic plasticity changes in vascular cognitive impairment and dementia. HA breakdown is a feature of the acute stage of stroke injury and may be detrimental through enhancement of the inflammatory response. Recent studies have shown that knockout mice lacking hyaluronic acid synthetase demonstrates epileptic phenotype and removal of HA leads to delayed development of epileptiform activity in cultured hippocampal neurons .

View Article and Find Full Text PDF

Neuroengineering methods can be effectively used in the design of new approaches to treat central nervous system and brain injury caused by neurotrauma, ischemia, or neurodegenerative disorders. During the last decade, significant results were achieved in the field of implant (scaffold) development using various biocompatible and biodegradable materials carrying neuronal cells for implantation into the injury site of the brain to repair its function. Neurons derived from animal or human induced pluripotent stem (iPS) cells are expected to be an ideal cell source, and induction methods for specific cell types have been actively studied to improve efficacy and specificity.

View Article and Find Full Text PDF

Living neuronal networks in dissociated neuronal cultures are widely known for their ability to generate highly robust spatiotemporal activity patterns in various experimental conditions. Such patterns are often treated as neuronal avalanches that satisfy the power scaling law and thereby exemplify self-organized criticality in living systems. A crucial question is how these patterns can be explained and modeled in a way that is biologically meaningful, mathematically tractable and yet broad enough to account for neuronal heterogeneity and complexity.

View Article and Find Full Text PDF

One of the main limitations preventing the realization of a successful dialogue between the brain and a putative enabling device is the intricacy of brain signals. In this perspective, closed-loop in vitro systems can be used to investigate the interactions between a network of neurons and an external system, such as an interacting environment or an artificial device. In this chapter, we provide an overview of closed-loop in vitro systems, which have been developed for investigating potential neuroprosthetic applications.

View Article and Find Full Text PDF

The phenomena of synchronization, rhythmogenesis and coherence observed in brain networks are believed to be a dynamic substrate for cognitive functions such as learning and memory. However, researchers are still debating whether the rhythmic activity emerges from the network morphology that developed during neurogenesis or as a result of neuronal dynamics achieved under certain conditions. In the present study, we observed self-organized spiking activity that converged to long, complex and rhythmically repeated superbursts in neural networks formed by mature hippocampal cultures with a high cellular density.

View Article and Find Full Text PDF

The architecture of neuron connectivity in brain networks is one of the basic mechanisms by which to organize and sustain a particular function of the brain circuitry. There are areas of the brain composed of well-organized layers of neurons connected by unidirectional synaptic connections (e.g.

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF) is regarded as a potent neuroprotector and a corrector of neural network activity in stress conditions. This work aimed to investigate the effect of GDNF on primary hippocampal cultures during acute normobaric hypoxia. Hypoxia induction was performed using day 14 in vitro cultures derived from mouse embryos (E18) with the preventive addition of GDNF (1 ng/ml) to the culture medium 10 min before oxygen deprivation.

View Article and Find Full Text PDF

Sensory information can be encoded using the average firing rate and spike occurrence times in neuronal network responses to external stimuli. Decoding or retrieving stimulus characteristics from the response pattern generally implies that the corresponding neural network has a selective response to various input signals. The role of various spiking activity characteristics (e.

View Article and Find Full Text PDF

The neuroprotective and antihypoxic effects of brain-derived neurotrophic factor (BDNF) on dissociated hippocampal cultures in a hypoxia model were investigated. These experiments demonstrate that 10 minutes of normobaric hypoxia increased the number of dead cells in primary culture, whereas a preventive application of BDNF increased the number of viable cells. Spontaneous bioelectrical and calcium activity in neural networks was analyzed using multielectrode arrays and functional intravital calcium imaging.

View Article and Find Full Text PDF

The extracellular matrix (ECM) plays an important role in use-dependent synaptic plasticity. Hyaluronic acid (HA) is the backbone of the neural ECM, which has been shown to modulate α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate (AMPA) receptor mobility, paired-pulse depression, L-type voltage-dependent Ca(2+) channel (L-VDCC) activity, long-term potentiation and contextual fear conditioning. To investigate the role of HA in the development of spontaneous neuronal network activity, we used microelectrode array recording and Ca(2+) imaging in hippocampal cultures enzymatically treated with hyaluronidase.

View Article and Find Full Text PDF

Learning in neuronal networks can be investigated using dissociated cultures on multielectrode arrays supplied with appropriate closed-loop stimulation. It was shown in previous studies that weakly respondent neurons on the electrodes can be trained to increase their evoked spiking rate within a predefined time window after the stimulus. Such neurons can be associated with weak synaptic connections in nearby culture network.

View Article and Find Full Text PDF