Antimicrobial activity of chitosan in protein-rich media is of a particular interest for various protein-based drug delivery and other systems. For the first time, bacteriostatic activity of chitosan derivatives in the presence of caseinate sodium (CAS) was studied and discussed. Complexation of chitosan derivatives soluble in acidic (CH and RCH) or alkalescent (RCH) media with CAS was confirmed by fluorescent spectroscopy, turbodimetry, light scattering data and measurement of electrical potentials of CAS/chitosan derivative complexes.
View Article and Find Full Text PDFPhase analysis, spectroscopic, and light scattering methods are applied to investigate the peculiarities of the interaction of oligochitosan (OCHI) with native and preheated bovine serum albumin (BSA) as well as the conformational and structural changes of BSA in BSA/OCHI complex. As shown, untreated BSA binds with OCHI mainly forming soluble electrostatic nanocomplexes, with the binding causing an increase in BSA helicity without a change in the local tertiary structure and thermal stability of BSA. In contrast, soft preheating at 56 °C enhances the complexation of BSA with OCHI and slightly destabilizes the secondary and local tertiary structures of BSA within the complex particles.
View Article and Find Full Text PDFСomplexation of oligochitosan (OCHI) having the degree of acetylation (DA 26 %) with sodium caseinate (SC) at pH 5.8 and 7.2 is described and compared with the complexation of OCHI (DA 2 %) at pH 5.
View Article and Find Full Text PDFInteraction of binary chitosan/nonionic surfactant (NIS) system with sodium dodecyl sulfate (SDS) in aqueous solution is described using turbodimetry, light scattering, electophoretic mobility and cryogenic electron microscopy. The formation of insoluble CHI/SDS complexes is weakened with a decrease in molecular weight of chitosan and critical micelle concentration of NIS as well as with an increase in NIS concentration. Soluble chitosan/NIS complexes absorb SDS molecules until the charge of mixed chitosan/NIS/SDS complexes reaches a critical value that depends on chitosan molecular weight followed by aggregation of primary electrostatic complexes via hydrogen bonding to complex nanoparticles.
View Article and Find Full Text PDFThis work studies the effect of the helix-coil transition in gelatin on the structure development in the complex forming water-gelatin-BSA system using dynamic light scattering, environment scanning electron microscopy, rheometry, differential scanning microcalorimetry, circular dichroism, fluorescence, and absorption measurements. It was established that the structure of the complexes formed and the mechanism of intermacromolecular interaction are different in the case of two conformation states of gelatin. Above the temperature of the conformational transition (40 °C) intermacromolecular interaction leads to collapse gelatin macromolecules and formation compact (30 nm in radius) BSA-gelatin complexes (∼6:1, mole/mole), partial stabilization of the secondary structure (increase the mean helix content), and stabilization of BSA molecules against thermo aggregation.
View Article and Find Full Text PDF