Publications by authors named "Irina L Rempel"

Cellular aging is a multifactorial process that is characterized by a decline in homeostatic capacity, best described at the molecular level. Physicochemical properties such as pH and macromolecular crowding are essential to all molecular processes in cells and require maintenance. Whether a drift in physicochemical properties contributes to the overall decline of homeostasis in aging is not known.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is the sole gateway to the nuclear interior, and its function is essential to all eukaryotic life. Controlling the functionality of NPCs is a tremendous challenge for cells. Firstly, NPCs are large structures, and their complex assembly does occasionally go awry.

View Article and Find Full Text PDF

The nuclear pore complex (NPC) is embedded in the nuclear envelope and forms the main gateway to the nuclear interior including the inner nuclear membrane (INM). Two INM proteins in yeast are selectively imported. Their sorting signals consist of a nuclear localization signal, separated from the transmembrane domain by a long intrinsically disordered (ID) linker.

View Article and Find Full Text PDF

Nuclear transport is facilitated by the Nuclear Pore Complex (NPC) and is essential for life in eukaryotes. The NPC is a long-lived and exceptionally large structure. We asked whether NPC quality control is compromised in aging mitotic cells.

View Article and Find Full Text PDF

The budding yeast divides asymmetrically, with a smaller daughter cell emerging from its larger mother cell. While the daughter lineage is immortal, mother cells age with each cell division and have a finite lifespan. The replicative ageing of the yeast mother cell has been used as a model to study the ageing of mitotically active human cells.

View Article and Find Full Text PDF

The budding yeast Saccharomyces cerevisiae divides asymmetrically, producing a new daughter cell from the original mother cell. While daughter cells are born with a full lifespan, a mother cell ages with each cell division and can only generate on average 25 daughter cells before dying. Aged yeast cells exhibit genomic instability, which is also a hallmark of human aging.

View Article and Find Full Text PDF