Publications by authors named "Irina Kirpich"

Alcohol-associated liver disease (ALD) is a prevalent medical problem with limited effective treatment strategies. Although many biological processes contributing to ALD have been elucidated, a complete understanding of the underlying mechanisms is still lacking. The current study employed a proteomic approach to identify hepatic changes resulting from ethanol (EtOH) consumption and the genetic ablation of the formyl peptide receptor 2 (FPR2), a G-protein coupled receptor known to regulate multiple signaling pathways and biological processes, in a mouse model of ALD.

View Article and Find Full Text PDF

Lipids play a significant role in life activities and participate in the biological system through different pathways. Although comprehensive two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) has been developed to profile lipid abundance changes, lipid identification and quantification from 2DLC-MS data remain a challenge. We created , open-source software for lipid assignment and isotopic peak stripping of the 2DLC-MS data.

View Article and Find Full Text PDF

Background: Alcohol-associated hepatitis (AH) is one of the clinical presentations of alcohol-associated liver disease. AH has poor prognosis, and corticosteroids remain the mainstay of drug therapy. However, ~40% of patients do not respond to this treatment, and the mechanisms underlying the altered response to corticosteroids are not understood.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a serious public health problem with limited pharmacologic options. The goal of the current study was to investigate the efficacy of pharmacologic inhibition of soluble epoxide hydrolase (sEH), an enzyme involved in lipid metabolism, in experimental ALD, and to examine the underlying mechanisms. C57BL/6J male mice were subjected to acute-on-chronic ethanol (EtOH) feeding with or without the sEH inhibitor 4-[[trans-4-[[[[4-trifluoromethoxy phenyl]amino]carbonyl]-amino]cyclohexyl]oxy]-benzoic acid (TUCB).

View Article and Find Full Text PDF

Chronic and heavy alcohol consumption is commonly observed in alcohol use disorder (AUD). AUD often leads to alcohol-associated organ injury, including alcohol-associated liver disease (ALD). Approximately 10-20% of patients with AUD progress to ALD.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is the most common chronic liver disease and carries a significant healthcare burden. ALD has no long-term treatment options aside from abstinence, and the mechanisms that contribute to its pathogenesis are not fully understood. This study aimed to investigate the role of formyl peptide receptor 2 (FPR2), a receptor for immunomodulatory signals, in the pathogenesis of ALD.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a major health problem with limited effective treatment options. Alcohol-associated hepatitis (AH) is a subset of severe ALD with a high rate of mortality due to infection, severe inflammation, and ultimately multi-organ failure. There is an urgent need for novel therapeutic approaches to alleviate the human suffering associated with this condition.

View Article and Find Full Text PDF

Background: The prevalence of alcohol-associated liver disease (ALD), a subtype of fatty liver disease (FLD), continues to rise. ALD is a major cause of preventable death. Polychlorinated biphenyl (PCB) 126 is an environmentally relevant, dioxin-like pollutant whose negative metabolic effects have been well documented.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a common chronic liver disease and major contributor to liver disease-related deaths worldwide. Despite its pre-valence, there are few effective pharmacological options for the severe stages of this disease. While much pre-clinical research attention is paid to drug development in ALD, many of these experimental therapeutics have limitations such as poor pharmacokinetics, poor efficacy, or off-target side effects due to systemic administration.

View Article and Find Full Text PDF

Background: Alcohol use is a major global healthcare burden that contributes to numerous adverse health outcomes, including liver disease. Many factors influence individual susceptibility to alcohol-associated diseases, including nutritional factors. The objective of the current study was to examine inter-relations among alcohol, dietary micronutrients and macronutrient consumption, and liver health by analyzing data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES).

View Article and Find Full Text PDF

Alcohol-associated liver disease is a global health care burden, with alcohol-associated cirrhosis (AC) and alcohol-associated hepatitis (AH) being two clinical manifestations with poor prognosis. The limited efficacy of standard of care for AC and AH highlights a need for therapeutic targets and strategies. The current study aimed to address this need through the identification of hepatic proteome and phosphoproteome signatures of AC and AH.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a prevalent liver disorder and significant global healthcare burden with limited effective therapeutic options. The gut-liver axis is a critical factor contributing to susceptibility to liver injury due to alcohol consumption. In the current study, we tested whether human beta defensin-2 (hBD-2), a small anti-microbial peptide, attenuates experimental chronic ALD.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is the leading cause of liver disease worldwide, and alcohol-associated hepatitis (AH), a severe form of ALD, is a major contributor to the mortality and morbidity due to ALD. Many factors modulate susceptibility to ALD development and progression, including nutritional factors such as dietary fatty acids. Recent work from our group and others showed that modulation of dietary or endogenous levels of n6-and n3-polyunsaturated fatty acids (PUFAs) can exacerbate or attenuate experimental ALD, respectively.

View Article and Find Full Text PDF

The oxidation of dietary linoleic acid (LA) produces oxidized LA metabolites (OXLAMs) known to regulate multiple signaling pathways in vivo. Recently, we reported that feeding OXLAMs to mice resulted in liver inflammation and apoptosis. However, it is not known whether this is due to a direct effect of OXLAMs accumulating in the liver, or to their degradation into bioactive shorter chain molecules (e.

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a spectrum of liver disorders ranging from steatosis to steatohepatitis, fibrosis, and cirrhosis. Alcohol-associated hepatitis (AH) is an acute and often severe form of ALD with substantial morbidity and mortality. The mechanisms and mediators of ALD progression and severity are not well understood, and effective therapeutic options are limited.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD). Previously, we demonstrated that the PCB mixture, Aroclor1260, exacerbated NAFLD, reflective of toxicant-associated steatohepatitis, in diet-induced obese mice, in part through pregnane-xenobiotic receptor (PXR) and constitutive androstane receptor (CAR) activation. Recent studies have also reported PCB-induced changes in the gut microbiome that consequently impact NAFLD.

View Article and Find Full Text PDF

Chronic alcohol consumption leads to disturbances in intestinal function which can be exacerbated by inflammation and modulated by different factors, e.g., polyunsaturated fatty acids (PUFAs).

View Article and Find Full Text PDF

Alcohol-associated liver disease (ALD) is a major human health issue for which there are limited treatment options. Experimental evidence suggests that nutrition plays an important role in ALD pathogenesis, and specific dietary fatty acids, for example, n6 or n3-PUFAs, may exacerbate or attenuate ALD, respectively. The purpose of the current study was to determine whether the beneficial effects of n3-PUFA enrichment in ALD were mediated, in part, by improvement in Wnt signaling.

View Article and Find Full Text PDF

The intestine interacts with many factors, including dietary components and ethanol (EtOH), which can impact intestinal health. Previous studies showed that different types of dietary fats can modulate EtOH-induced changes in the intestine; however, mechanisms underlying these effects are not completely understood. Here, we examined intestinal transcriptional responses to EtOH in WT and transgenic fat-1 mice (which endogenously convert n6 to n3 polyunsaturated fatty acids [PUFAs]) to identify novel genes and pathways involved in EtOH-associated gut pathology and discern the impact of n3 PUFA enrichment.

View Article and Find Full Text PDF

Emerging evidence suggests that soluble epoxide hydrolase (sEH) inhibition is a valuable therapeutic strategy for the treatment of numerous diseases, including those of the liver. sEH rapidly degrades cytochrome P450-produced epoxygenated lipids (epoxy-fatty acids), which are synthesized from omega-3 and omega-6 polyunsaturated fatty acids, that generally exert beneficial effects on several cellular processes. sEH hydrolysis of epoxy-fatty acids produces dihydroxy-fatty acids which are typically less biologically active than their parent epoxide.

View Article and Find Full Text PDF
Article Synopsis
  • * Mice engineered to have higher levels of omega-3 PUFAs showed protection against ethanol's harmful effects on intestinal health and reduced inflammation markers compared to wild-type mice.
  • * The study indicates that enhancing omega-3 PUFA levels or administering specialized pro-resolving mediators like resolvin D1 can help maintain gut integrity and decrease liver injury from alcohol consumption.
View Article and Find Full Text PDF

Purpose: Fatty liver disease (FLD) affects over 25% of the global population and may lead to liver-related mortality due to cirrhosis and liver cancer. FLD caused by occupational and environmental chemical exposures is termed "toxicant-associated steatohepatitis" (TASH). The current review addresses the scientific progress made in the mechanistic understanding of TASH since its initial description in 2010.

View Article and Find Full Text PDF

The symposium "Mechanisms, Biomarkers and Targets for Therapy in Alcohol-associated Liver Injury: From Genetics to Nutrition" was held at the 19th Congress of International Society for Biomedical Research on Alcoholism on September 13th, 2018 in Kyoto, Japan. The goal of the symposium was to discuss the importance of genetics and nutrition in alcoholic liver disease (ALD) development from mechanistic and therapeutic perspectives. The following is a summary of this session addressing the gene polymorphisms in ALD, the role of zinc in gut-liver axis perturbations associated with ALD, highlighting the importance of dietary fat in ALD pathogenesis, the hepatic n6 and n3 PUFA oxylipin pattern associated with ethanol-induced liver injury, and finally deliberating on new biomarkers for alcoholic hepatitis and their implications for diagnosis and therapy.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: