Publications by authors named "Irina Kharatishvili"

We aimed to generate two-dimensional (2D) unfolded cortical maps from magnetic resonance (MR) images to delineate the location of traumatic brain injury (TBI)-induced cortical damage in functionally diverse cytoarchitectonic areas of the cerebral cortex, and to predict the severity of functional impairment after TBI based on the lesion location and extent. Lateral fluid-percussion injury was induced in adult rats and T2 maps were acquired with magnetic resonance imaging (MRI) at 3 days post-TBI. Somatomotor deficits were assessed based on the composite neuroscore and beam balance test, and spatial learning was assessed in the Morris water maze.

View Article and Find Full Text PDF

Objective: Electroencephalography (EEG) is an important tool in the diagnosis of epilepsy. Interictal spikes on EEG are used to monitor the development of epilepsy and the effects of drug therapy. EEG recordings are generally long and the data voluminous.

View Article and Find Full Text PDF

We describe the visualization of the barrel cortex of the primary somatosensory area (S1) of ex vivo adult mouse brain with short-tracks track density imaging (stTDI). stTDI produced much higher definition of barrel structures than conventional fractional anisotropy (FA), directionally-encoded color FA maps, spin-echo T1- and T2-weighted imaging and gradient echo T1/T2*-weighted imaging. 3D high angular resolution diffusion imaging (HARDI) data were acquired at 48 micron isotropic resolution for a (3mm)(3) block of cortex containing the barrel field and reconstructed using stTDI at 10 micron isotropic resolution.

View Article and Find Full Text PDF

The complex pathogenesis of temporal lobe epilepsy includes neuronal and glial pathology, synaptic reorganization, and an immune response. However, the spatio-temporal pattern of structural changes in the brain that provide a substrate for seizure generation and modulate the seizure phenotype is yet to be completely elucidated. We used quantitative magnetic resonance imaging (MRI) to study structural changes triggered by status epilepticus (SE) and their association with epileptogenesis and with activation of complement component 3 (C3).

View Article and Find Full Text PDF

The present study tested a hypothesis that early identification of injury severity with quantitative magnetic resonance imaging (MRI) provides biomarkers for predicting increased seizure susceptibility and epileptogenesis after traumatic brain injury (TBI). TBI was induced by lateral fluid percussion injury (FPI) in adult rats. Quantitative T2, T1ρ, and diffusion were assessed with MRI at 9 days, 23 days, or 2 months post-TBI in the perilesional cortex, thalamus, and hippocampus.

View Article and Find Full Text PDF

Posttraumatic epilepsy is a common consequence of traumatic brain injury in humans. Major predictors for the development of posttraumatic epilepsy include the severity of injury and occurrence of cortical contusions. The effect of the size or location of the cortical lesion on the risk of epileptogenesis, however, is poorly understood.

View Article and Find Full Text PDF

Purpose Of Review: The purpose of this study is to focus on recent advances in understanding of the genetic and epidemiologic risk factors, development, modeling, and prevention of epilepsy after traumatic brain injury (TBI).

Recent Findings: Epidemiologic data suggest that the epileptogenic period after TBI in humans may last longer than previously thought. Depression was found to be an important risk factor for posttraumatic epilepsy (PTE).

View Article and Find Full Text PDF

Severity of traumatic brain injury (TBI) positively correlates with the risk of post-traumatic epilepsy (PTE). Studies on post-traumatic epileptogenesis would greatly benefit from markers that at acute phase would reliably predict the extent and severity of histologic brain damage caused by TBI in individual subjects. Currently in experimental models, severity of TBI is determined by the pressure of applied load that does not directly reflect the extent of inflicted brain injury, mortality within experimental population, or impairment in behavioral tests that are laborious to perform.

View Article and Find Full Text PDF

A large number of animal models of traumatic brain injury (TBI) are already available for studies on mechanisms and experimental treatments of TBI. Immediate and early seizures have been described in many of these models with focal or mixed type (both gray and white matter damage) injury. Recent long-term video-electroencephalography (EEG) monitoring studies have demonstrated that TBI produced by lateral fluid-percussion injury in rats results in the development of late seizures, that is, epilepsy.

View Article and Find Full Text PDF

In traumatic brain injury (TBI) the initial impact causes both immediate damage and also launches a cascade of slowly progressive secondary damage. The chronic outcome disabilities vary greatly and can occur several years later. The aim of this study was to find predictive factors for the long-term outcome using multiparametric, non-invasive magnetic resonance imaging (MRI) methodology and a clinically relevant rat model of fluid percussion induced TBI.

View Article and Find Full Text PDF

To understand the dynamics of progressive brain damage after lateral fluid-percussion induced traumatic brain injury (TBI) in rat, which is the most widely used animal model of closed head TBI in humans, MRI follow-up of 11 months was performed. The evolution of tissue damage was quantified using MRI contrast parameters T(2), T(1rho), diffusion (D(av)), and tissue atrophy in the focal cortical lesion and adjacent areas: the perifocal and contralateral cortex, and the ipsilateral and contralateral hippocampus. In the primary cortical lesion area, which undergoes remarkable irreversible pathologic changes, MRI alterations start at 3 h post-injury and continue to progress for up to 6 months.

View Article and Find Full Text PDF

We tested a hypothesis that manganese enhanced magnetic resonance imaging (MEMRI) after systemic injection of MnCl(2) could detect axonal sprouting in the hippocampus following kainate (KA) induced status epilepticus (SE). MEMRI was performed at 3 h, 25 h, 4 days, and 2 months post-SE. To assess the contribution of various cellular alterations that occur in parallel with sprouting to the MEMRI signal, we sacrificed animals for histology at 4 days and 2 months post-SE.

View Article and Find Full Text PDF

The need to use animal models to develop imaging markers that could be linked to electrophysiological abnormalities in epilepsy and able to predict epileptogenicity in human studies is widely acknowledged. This study aimed to investigate the value of early magnetic resonance imaging (MRI) in predicting the long-term increased seizure susceptibility in the clinically relevant model of post-traumatic epilepsy (PTE). Moderate traumatic brain injury (TBI) was induced by lateral fluid-percussion in two groups of adult rats (34 injured, 16 controls).

View Article and Find Full Text PDF

Epileptogenesis refers to a phenomenon in which the brain undergoes molecular and cellular alterations after a brain-damaging insult, which increase its excitability and eventually lead to the occurrence of recurrent spontaneous seizures. Common epileptogenic factors include traumatic brain injury (TBI), stroke, and cerebral infections. Only a subpopulation of patients with any of these brain insults, however, will develop epilepsy.

View Article and Find Full Text PDF

Prevention of epileptogenesis after brain insults, such as status epilepticus (SE), head trauma, or stroke, remains a challenge. Even if epilepsy cannot be prevented, it would be beneficial if the pathologic process could be modified to result in a less severe disease. We examined whether early discontinuation of SE reduces the risk of epilepsy or results in milder disease.

View Article and Find Full Text PDF