Publications by authors named "Irina Karyagina"

The misfolding of α-synuclein (αS) to a cross-β-sheet amyloid structure is associated with pathological conditions in Parkinson's and other neurodegenerative diseases. Using pulse electron paramagnetic resonance spectroscopy combined with a cross-labeling strategy involving four double mutants, we were able to determine the intramolecular distance between the extremal β-strands. The distance of 4.

View Article and Find Full Text PDF

Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as protein-protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron paramagnetic resonance (EPR) and NMR spectroscopy. Close agreement was found between the conformation of the spin label observed in the crystal structure with interspin distances measured by EPR and signal broadening in NMR spectra, suggesting that the conformation seen in the crystal structure is also preferred in solution.

View Article and Find Full Text PDF

Photosystem I (PS I) contains two molecules of phylloquinone that function as electron transfer cofactors at highly reducing midpoint potentials. It is therefore surprising that each phylloquinone is hydrogen bonded at the C(4) position to the backbone -NH of a Leu residue since this serves to drive the midpoint potential more oxidizing. To better understand the role of the H-bond, a PS I variant was generated in which L722(PsaA) was replaced with a bulky Trp residue.

View Article and Find Full Text PDF

Electrostatic calculations have predicted that the partial negative charge associated with D575PsaB plays a significant role in modulating the midpoint potentials of the A1A and A1B phylloquinones in photosystem I. To test this prediction, the side chain of residue 575PsaB was changed from negatively charged (D) to neutral (A) and to positively charged (K). D566PsaB, which is located at a considerable distance from either A1A or A1B, and should affect primarily the midpoint potential of FX, was similarly changed.

View Article and Find Full Text PDF

In photosystem I (PS I), phylloquinone (PhQ) acts as a low potential electron acceptor during light-induced electron transfer (ET). The origin of the very low midpoint potential of the quinone is investigated by introducing anthraquinone (AQ) into PS I in the presence and absence of the iron-sulfur clusters. Solvent extraction and reincubation is used to obtain PS I particles containing AQ and the iron-sulfur clusters, whereas incubation of the menB rubA double mutant yields PS I with AQ in the PhQ site but no iron-sulfur clusters.

View Article and Find Full Text PDF