Publications by authors named "Irina Ionova"

The kinetic regularities of the initial stage of chemical oxidative polymerization of methylene blue under the action of ammonium peroxodisulfate in an aqueous medium have been established by the method of potentiometry. It was shown that the methylene blue polymerization mechanism includes the stages of chain initiation and growth. It was found that the rate of the initial stage of the reaction obeys the kinetic equation of the first order with the activation energy 49 kJ × mol.

View Article and Find Full Text PDF

Tetrahydrobiopterin (BH4) represents a potential strategy for the treatment of cardiac remodeling, fibrosis and/or diastolic dysfunction. The effects of oral treatment with BH4 (Sapropterin™ or Kuvan™) are however dose-limiting with high dose negating functional improvements. Cardiomyocyte-specific overexpression of GTP cyclohydrolase I (mGCH) increases BH4 several-fold in the heart.

View Article and Find Full Text PDF

For canonical lipid raft mixtures of cholesterol (chol), N-palmitoylsphingomyelin (PSM), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), electron paramagnetic resonance (EPR) of spin-labeled phospholipids--which is insensitive to domain size--is used to determine the ternary phase diagram at 23°C. No phase boundaries are found for binary POPC/chol mixtures, nor for ternary mixtures with PSM content <24 mol %. EPR lineshapes indicate that conversion from the liquid-disordered (L(α)) to liquid-ordered (L(o)) phase occurs continuously in this region.

View Article and Find Full Text PDF

Aims: Hyperglycaemia (HG) decreases intracellular tetrahydrobiopterin (BH(4)) concentrations, and this action may contribute to injury during myocardial ischaemia and reperfusion. We investigated whether increased BH(4) by cardiomyocyte-specific overexpression of the GTP cyclohydrolase (GTPCH) 1 gene rescues myocardial and mitochondrial protection by ischaemic preconditioning (IPC) during HG through a nitric oxide (NO)-dependent pathway.

Methods And Results: Mice underwent 30 min of myocardial ischaemia followed by 2 h of reperfusion with or without IPC elicited with four cycles of 5 min ischaemia/5 min of reperfusion in the presence or absence of HG produced by d-glucose.

View Article and Find Full Text PDF

Background: There remains no reliable non-invasive method to detect cardiac transplant rejection. Recently, speckle-tracking 2-dimensional strain echocardiography (2DSE) was shown to be sensitive in the early detection of myocardial dysfunction in various models of cardiomyopathy. We aim to determine if 2DSE-derived functional indices can detect cardiac transplant rejection.

View Article and Find Full Text PDF

GTP cyclohydrolase I (GTPCH) is the rate-limiting enzyme for tetrahydrobiopterin (BH(4)) synthesis. Decreases in GTPCH activity and expression have been shown in late stages of acute cardiac rejection, suggesting a deficit in BH(4). We hypothesized that increasing intracellular levels of BH(4) by cardiac myocyte-targeted overexpression of GTPCH would diminish acute cardiac allograft rejection.

View Article and Find Full Text PDF

Tetrahydrobiopterin (BH(4)), a cofactor of inducible nitric-oxide synthase (iNOS), is an important post-translational regulator of NO bioactivity. We examined whether treatment of cardiac allograft recipients with sepiapterin [S-(-)-2-amino-7,8-dihydro-6-(2-hydroxy-1-oxopropyl)-4-(1H)-pteridinone], a precursor of BH(4), inhibited acute rejection and apoptosis in cardiac transplants. Heterotopic cardiac transplantation was performed in Wistar-Furth donor to Lewis recipient strain rats.

View Article and Find Full Text PDF

Adult rat cardiac myocytes typically display a phenotypic response to cytokines manifested by low or no increases in nitric oxide (NO) production via inducible NO synthase (iNOS) that distinguishes them from other cell types. To better characterize this response, we examined the expression of tetrahydrobiopterin (BH4)-synthesizing and arginine-utilizing genes in cytokine-stimulated adult cardiac myocytes. Intracellular BH4 and 7,8-dihydrobiopterin (BH2) and NO production were quantified.

View Article and Find Full Text PDF

There is evidence that nitric oxide (NO) formation in adult cardiomyocytes stimulated with lipopolysaccharide (LPS) is not commensurate with iNOS levels. Tetrahydrobiopterin (BH(4)) is a key factor in the stabilization and NO production by iNOS homodimer. Thus we hypothesized that BH(4) is a limiting factor for NO production in adult cardiomyocytes in response to LPS and cytokines (TNF-alpha, IL-1, IFN-gamma alone, or mixed).

View Article and Find Full Text PDF

Chlamydia trachomatis is an obligate intracellular gram-negative pathogen and the etiologic agent of significant ocular and genital tract diseases. Chlamydiae primarily infect epithelial cells, and the inflammatory response of these cells to the infection directs both the innate and adaptive immune response. This study focused on determining the cellular immune receptors involved in the early events following infection with the L2 serovar of C.

View Article and Find Full Text PDF