Postnatal kidney growth is substantial and involves expansion in kidney tubules without growth of new nephrons, which are the functional units of the kidney. Proliferation and differentiation pathways underpinning nephron elongation are not well defined. To address this, we performed sequential characterization of mouse kidney transcriptomics at the single cell level.
View Article and Find Full Text PDFThe ongoing efforts to optimize rechargeable Li-ion batteries led to the interest in intercalation of nanoscale layered compounds, including bilayer graphene. Its lithium intercalation has been demonstrated recently but the mechanisms underpinning the storage capacity remain poorly understood. Here, using magnetotransport measurements, we report in-operando intercalation dynamics of bilayer graphene.
View Article and Find Full Text PDFWe study the room-temperature electrical control of charge and spin transport in high-quality bilayer graphene, fully encapsulated with hBN and contacted via 1D spin injectors. We show that spin transport in this device architecture is measurable at room temperature and its spin transport parameters can be modulated by opening of a band gap via a perpendicular displacement field. The modulation of the spin current is dominated by the control of the spin relaxation time with displacement field, demonstrating the basic operation of a spin-based field-effect transistor.
View Article and Find Full Text PDFSpintronics involves the development of low-dimensional electronic systems with potential use in quantum-based computation. In graphene, there has been significant progress in improving spin transport characteristics by encapsulation and reducing impurities, but the influence of standard two-dimensional (2D) tunnel contacts, via pinholes and doping of the graphene channel, remains difficult to eliminate. Here, we report the observation of spin injection and tunable spin signal in fully encapsulated graphene, enabled by van der Waals heterostructures with one-dimensional (1D) contacts.
View Article and Find Full Text PDFSuperconductors with nontrivial band structure topology represent a class of materials with unconventional and potentially useful properties. Recent years have seen much success in creating artificial hybrid structures exhibiting the main characteristics of 2D topological superconductors. Yet, bulk materials known to combine inherent superconductivity with nontrivial topology remain scarce, largely because distinguishing their central characteristic-the topological surface states-has proved challenging due to a dominant contribution from the superconducting bulk.
View Article and Find Full Text PDFProgressive fibrosis leads to loss of organ function and affects many organs as a result of excessive extracellular matrix production. The ubiquitous matrix polysaccharide hyaluronan (HA) is central to this through association with its primary receptor, CD44, which exists as standard CD44 (CD44s) or multiple splice variants. Mediators such as profibrotic transforming growth factor (TGF)-β1 and proinflammatory interleukin (IL)-1β are widely associated with fibrotic progression.
View Article and Find Full Text PDFBackground: Proximal tubular cells (PTCs) are the most abundant cell type in the kidney. PTCs are central to normal kidney function and to regeneration versus organ fibrosis following injury. This study used single-nucleus RNA sequencing (snRNAseq) to describe the phenotype of PTCs in renal fibrosis.
View Article and Find Full Text PDFHigher-order exchange interactions and quantum effects are widely known to play an important role in describing the properties of low-dimensional magnetic compounds. Here, the recently discovered 2D van der Waals (vdW) CrI is identified as a quantum non-Heisenberg material with properties far beyond an Ising magnet as initially assumed. It is found that biquadratic exchange interactions are essential to quantitatively describe the magnetism of CrI but quantum rescaling corrections are required to reproduce its thermal properties.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Graphene has great potential for use in infrared (IR) nanodevices. At these length scales, nanoscale features, and their interaction with light, can be expected to play a significant role in device performance. Bubbles in van der Waals heterostructures are one such feature, which have recently attracted considerable attention, thanks to their ability to modify the optoelectronic properties of two-dimensional (2D) materials through strain.
View Article and Find Full Text PDFUsing a computer simulation, we have studied the random sequential adsorption of stiff linear k-mers onto a square lattice. Each such particle occupies k adjacent lattice sites. During deposition, the two mutually perpendicular orientations of the particles are equiprobable, hence, a macroscopically isotropic monolayer is formed.
View Article and Find Full Text PDFDefect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment.
View Article and Find Full Text PDFWhen approaching the atomically thin limit, defects and disorder play an increasingly important role in the properties of two-dimensional (2D) materials. While defects are generally thought to negatively affect superconductivity in 2D materials, here we demonstrate the contrary in the case of oxygenation of ultrathin tantalum disulfide (TaS). Our first-principles calculations show that incorporation of oxygen into the TaS crystal lattice is energetically favorable and effectively heals sulfur vacancies typically present in these crystals, thus restoring the electronic band structure and the carrier density to the intrinsic characteristics of TaS.
View Article and Find Full Text PDFHypoparathyroidism is genetically heterogeneous and characterized by low plasma calcium and parathyroid hormone (PTH) concentrations. X-linked hypoparathyroidism (XLHPT) in two American families, is associated with interstitial deletion-insertions involving deletions of chromosome Xq27.1 downstream of SOX3 and insertions of predominantly non-coding DNA from chromosome 2p25.
View Article and Find Full Text PDFBackground: GATA3 is a dual-zinc finger transcription factor that regulates gene expression in many developing tissues. In the kidney, GATA3 is essential for ureteric bud branching, and mice without it fail to develop kidneys. In humans, autosomal dominant mutations can cause renal aplasia as part of the hypoparathyroidism, renal dysplasia, deafness (HDR) syndrome that includes mesangioproliferative GN.
View Article and Find Full Text PDFPlasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons.
View Article and Find Full Text PDFViscous electron fluids have emerged recently as a new paradigm of strongly-correlated electron transport in solids. Here we report on a direct observation of the transition to this long-sought-for state of matter in a high-mobility electron system in graphene. Unexpectedly, the electron flow is found to be interaction-dominated but non-hydrodynamic (quasiballistic) in a wide temperature range, showing signatures of viscous flows only at relatively high temperatures.
View Article and Find Full Text PDFHexagonal boron nitride (hBN) is a prototypical high-quality two-dimensional insulator and an ideal material to study tunneling phenomena, as it can be easily integrated in vertical van der Waals devices. For spintronic devices, its potential has been demonstrated both for efficient spin injection in lateral spin valves and as a barrier in magnetic tunnel junctions (MTJs). Here we reveal the effect of point defects inevitably present in mechanically exfoliated hBN on the tunnel magnetoresistance of Co-hBN-NiFe MTJs.
View Article and Find Full Text PDFGraphene oxide membranes show exceptional molecular permeation properties, with promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of ∼9 Å (ref. 4), which is larger than the diameters of hydrated ions of common salts.
View Article and Find Full Text PDFWe have investigated the structure of atomic defects within monolayer NbSe encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reveal that adventitious impurities of C, N, and O can substitute into the NbSe lattice stabilizing Se divacancies.
View Article and Find Full Text PDFA decade of intense research on two-dimensional (2D) atomic crystals has revealed that their properties can differ greatly from those of the parent compound. These differences are governed by changes in the band structure due to quantum confinement and are most profound if the underlying lattice symmetry changes. Here we report a high-quality 2D electron gas in few-layer InSe encapsulated in hexagonal boron nitride under an inert atmosphere.
View Article and Find Full Text PDFAnalysis of the IR spectra of samples from 230 Russian oil paintings of the 20th century is used to propose a procedure for the threshold estimation of the age of paintings based on measured parameters (intensity ratios of spectral bands). The bands of compounds that are formed upon interaction of pigment (zinc white) with oil are used for dating.
View Article and Find Full Text PDFThe rate of water flow through hydrophobic nanocapillaries is greatly enhanced as compared to that expected from macroscopic hydrodynamics. This phenomenon is usually described in terms of a relatively large slip length, which is in turn defined by such microscopic properties as the friction between water and capillary surfaces and the viscosity of water. We show that the viscosity of water and, therefore, its flow rate are profoundly affected by the layered structure of confined water if the capillary size becomes less than 2 nm.
View Article and Find Full Text PDF