Publications by authors named "Irina Goryacheva"

This study investigates the tribological properties of graphite foils (GF) with densities of 1.0, 1.3, and 1.

View Article and Find Full Text PDF

Three-dimensional (3D) spheroid cell cultures of fibroblast (L929) and tumor mammary mouse (4T1) were chosen as in vitro tissue models for tissue imaging of ternary AgInS/ZnS fraction quantum dots (QDs). We showed that the tissue-mimetic morphology of cell spheroids through well-developed cell-cell and cell-matrix interactions and distinct diffusion/transport characteristics makes it possible to predict the effect of ternary AgInS/ZnS fraction QDs on the vital activity of cells while simultaneously comparing with classical two-dimensional (2D) cell cultures. The AgInS/ZnS fractions, emitting in a wide spectral range from 635 to 535 nm with a mean size from ∼3.

View Article and Find Full Text PDF

Analysis of real objects based on surface-enhanced Raman spectroscopy (SERS) often utilizes new SERS substrates and/or complex analysis procedures, and they are optimized for only the determination of a single analyte. Moreover, analysis simplicity and selectivity are often sacrificed for maximum (sometimes unnecessary) sensitivity. Consequently, this trend limits the versatility of SERS analysis and complicates its practical implementation.

View Article and Find Full Text PDF

Tracing individual cell pathways among the whole population is crucial for understanding their behavior, cell communication, migration dynamics, and fate. Optical labeling is one approach for tracing individual cells, but it typically requires genetic modification to induce the generation of photoconvertible proteins. Nevertheless, this approach has limitations and is not applicable to certain cell types.

View Article and Find Full Text PDF

Fluorescence labeling of cells is a versatile tool used to study cell behavior, which is of significant importance in biomedical sciences. Fluorescent photoconvertible markers based on polymer microcapsules have been recently considered as efficient and perspective ones for long-term tracking of individual cells. However, the dependence of photoconversion conditions on the polymeric capsule structure is still not sufficiently clear.

View Article and Find Full Text PDF

Cerium oxide nanoparticles (CeO NPs), which have powerful antioxidant properties, are promising nanomaterials for the treatment of diseases associated with oxidative stress. The well-developed surface of CeO NPs makes them promising for use as a multifunctional system for various biomedical applications. This work demonstrates a simple approach that allows the direct formation of a molecular fluorophore on the surface of CeO NPs using a simple one-pot hydrothermal synthesis.

View Article and Find Full Text PDF

The behavior and migration of human mesenchymal stromal cells (hMSCs) are focal points of research in the biomedical field. One of the major aspects is potential therapy using hMCS, but at present, the safety of their use is still controversial owing to limited data on changes that occur with hMSCs in the long term. Fluorescent photoconvertible proteins are intensively used today as "gold standard" to mark the individual cells and study single-cell interactions, migration processes, and the formation of pure lines.

View Article and Find Full Text PDF

Doxorubicin (DOX) is widely used in chemotherapy as an anti-tumor drug. However, DOX is highly cardio-, neuro- and cytotoxic. For this reason, the continuous monitoring of DOX concentrations in biofluids and tissues is important.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a powerful tool and an up-to-date method of analytical chemistry due to its high sensitivity and fingerprint recognition capabilities. Nowadays SERS due to its label-free detection capabilities is being actively developed in medical fields, for example in the analysis of biologically important substances in different matrixes, for potential on-site detection of toxic substances, food safety, and so on. To get the SERS signal, it is necessary the presence of plasmonic nanostructures in the SERS substrates.

View Article and Find Full Text PDF

Luminescent carbon nanostructures (CNSs) have been intensively researched, but there is still no consensus on a fundamental understanding of their structure and properties that limits their potential applications. In this study, we developed a facile approach to the synthesis of luminescent composite SiO nanoparticles/CNSs by the targeted formation of a molecular fluorophore, as the significant luminescent component of CNSs, on the surface of a silica matrix during a one-stage hydrothermal synthesis. Silica nanoparticles were synthesized by reverse microemulsion and used as a matrix for luminescent composites.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) are carbonaceous nanodots that are natural crystalline semiconductors and range from 1 to 20 nm. The broad range of applications for GQDs is based on their unique physical and chemical properties. Compared to inorganic quantum dots, GQDs possess numerous advantages, including formidable biocompatibility, low intrinsic toxicity, excellent dispensability, hydrophilicity, and surface grating, thus making them promising materials for nanophotonic applications.

View Article and Find Full Text PDF

Luminescent carbon nanostructures (CNSs) have attracted great interest from the scientific community due to their photoluminescent properties, structural features, low toxicity, and a great variety of possible applications. Unfortunately, a few problems hinder their further development. These include the difficulties of separating a mixture of nanostructures after synthesis and the dependence of their properties on the environment and the aggregate state.

View Article and Find Full Text PDF

The regularities of the formation of the resulting raster tool trajectories based on Lissajous figures for the lapping process of planes are established. This makes it possible to maximize the cutting ability of the tool, which contributes to its more uniform wear and increased productivity and processing quality. Optimal parameters of productivity and roughness of the treated surface during lapping of zirconium ceramics are achieved through the use of ASM paste 28/20 µm.

View Article and Find Full Text PDF

A new bioanalytical labeling system based on alloyed quantum dots' (QDs) photoluminescence quenching caused by an enzymatic reaction has been developed and tested for the first time. The catalytic role of the enzyme provides high sensitivity and the possibility of varying detecting time to improve assay sensitivity. Alloyed luminescent QDs were chosen in view of their small size (5-7 nm) and the high sensitivity of their optical properties to physicochemical interactions.

View Article and Find Full Text PDF

Light-emitting nanoparticles like semiconductor nanocrystals (termed quantum dots, QDs) are promising candidates for biosensing and bioimaging applications based on their bright and stable photoluminescent properties. As high-quality QDs are often synthesized in organic solvents, strategies needed to be developed to render them water-dispersible without affecting their optical properties and prevent changes in postmodification steps like the biofunctionalization with antibodies or DNA. Despite a large number of studies on suitable surface modification procedures, the preparation of water-soluble QDs for nanobiotechnology applications still presents a challenge.

View Article and Find Full Text PDF

Bacterial infections are a severe medical problem, especially in traumatology, orthopedics, and surgery. The local use of antibiotics-elution materials has made it possible to increase the effectiveness of acute infections treatment. However, the infection prevention problem remains unresolved.

View Article and Find Full Text PDF

Circulating cell free mitochondrial DNA (ccf-mtDNA) has emerged as a potential marker for diagnosis and prognosis of different chronic and age associated non-communicable diseases. Therefore, owing to its biomarker potential, we herein assessed a novel nano-photonic dual hybrid assay system for rapid and specific detection of ccf-mtDNA. The assay comprised of two systems, i.

View Article and Find Full Text PDF

This study presents a promising approach for the one-pot generation of the biotin-derived gold nanoparticles (GNPs@biotin). We report a direct method for the reduction of tetrachloroauric acid with biotin and generation of the labels due to nets formed via biotin-streptavidin interactions. The synthesized GNPs@biotin have a characteristic plasmon maximum, excellent colloidal stability, and streptavidin coupling efficiency.

View Article and Find Full Text PDF

Development of a rapid, sensitive and easy to use point of care assay for detection of circulating long non-coding RNAs (lncRNAs) is of great importance. These biomolecules possess the ability to regulate vital cellular processes and act as biomarkers for various human non-communicable diseases. The present work aimed to develop a simplified and reliable cytometric fluorescence-based approach for precise recognition of circulating lncRNAs in a given sample using biotinylated uracil-modified oligonucleotide tethered AlexaFluor488-labeled streptavidin gold colloidal (BiO-StrAG) nano-conjugates.

View Article and Find Full Text PDF

In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules.

View Article and Find Full Text PDF

Circulating cell-free miRNAs (ccf-miRs) have gained significant interest as biomarkers for lung cancer (LC) diagnosis. However, the clinical application of ccf-miRs is mainly limited by time, cost, and expertise-related problems of existing detection strategies. Recently, the development of different point-of-care (POC) approaches offers useful on-site platforms, because these technologies have important features such as portability, rapid turnaround time, minimal sample requirement, and cost-effectiveness.

View Article and Find Full Text PDF

Semiconductor quantum dots (QDs) are one of the most popular luminescent labels that are widely used in food and medical analysis. Their unique optical properties establish QDs as excellent tools for highly sensitive biosensors based on Förster resonance energy transfer (FRET). To provide a convenient analytical system with long-term optical stability, a FRET pair consisting of QDs as energy donor and gold nanoparticles (GNs) as energy acceptor was developed.

View Article and Find Full Text PDF

Modern, sensitive, rapid, and selective analytical methods for the detection of inflammatory markers are a crucial tool for the assessment of inflammation state, efficacy of medical intervention, and the prediction of future diseases. Their development requires understanding of current state for point-of-care testing of inflammatory markers and identification of their crucial drawbacks. This review summarizes the progress in the application of luminescent labels for immunoassays.

View Article and Find Full Text PDF

Using a combination of experimental Raman, FTIR, UV-VIS absorption and emission data, together with the corresponding DFT calculations we propose the mechanism of modification of the folic acid specifically under the hydrothermal treatment at 200 °C. We established that folic acid breaks down into fragments while the pteridine moiety remains intact likely evolving into 6-formylpterin with the latter responsible for the increase in fluorescence emission at 450 nm. The results suggest that hydrothermal approach can be used for production of other purpose-engineered fluorophores.

View Article and Find Full Text PDF