Inflammatory bowel diseases (IBD) are associated with compositional and functional changes of the intestinal microbiota, but specific contributions of individual bacteria to chronic intestinal inflammation remain unclear. is a resident member of the human intestinal core microbiota that has been linked to the pathogenesis of IBD and induces chronic colitis in susceptible monoassociated IL-10-deficient (IL-10) mice. In this study, we characterized the colitogenic activity of as part of a simplified human microbial consortium based on seven enteric bacterial strains (SIHUMI).
View Article and Find Full Text PDFIn this study, we investigated the impact of the cell membrane composition of E. faecalis on its recognition by the host immune system. To this end, we employed an E.
View Article and Find Full Text PDFBackground: After uropathogenic Escherichia coli (UPEC), Enterococcus faecalis is the second most common pathogen causing urinary tract infections. Monoglucosyl-diacylglycerol (MGlcDAG) and diglucosyl-diacylglycerol (DGlcDAG) are the main glycolipids of the E. faecalis cell membrane.
View Article and Find Full Text PDFBackground & Aims: Matrix metalloproteases (MMPs) mediate pathogenesis of chronic intestinal inflammation. We characterized the role of the gelatinase (GelE), a metalloprotease from Enterococcus faecalis, in the development of colitis in mice.
Methods: Germ-free, interleukin-10-deficient (IL-10(-/-)) mice were monoassociated with the colitogenic E faecalis strain OG1RF and isogenic, GelE-mutant strains.
Enterococcus faecalis is among the most important nosocomial pathogens. The intestinal mucosa is considered to be the main site used by these bacteria for entrance and dissemination. A better understanding of the mechanisms involved in colonization and invasion of enterococci may help to devise methods to prevent infections in hospitalized patients.
View Article and Find Full Text PDFThe isoflavonoid genistein, the cyclic triterpene glycyrrhetinic acid, and salicylate induce mitochondrial swelling and loss of membrane potential (Delta Psi) in rat liver mitochondria (RLM). These effects are Ca(2+)-dependent and are prevented by cyclosporin A and bongkrekik acid, classic inhibitors of mitochondrial permeability transition (MPT). This membrane permeabilization is also inhibited by N-ethylmaleimide, butylhydroxytoluene, and mannitol.
View Article and Find Full Text PDF