A large body of evidence from human and animal studies demonstrates that the maternal diet during pregnancy can programme physiological and metabolic functions in the developing fetus, effectively determining susceptibility to later disease. The mechanistic basis of such programming is unclear but may involve resetting of epigenetic marks and fetal gene expression. The aim of this study was to evaluate genome-wide DNA methylation and gene expression in the livers of newborn rats exposed to maternal protein restriction.
View Article and Find Full Text PDFAngiotensin II acts through two pharmacologically distinct receptors known as AT1 and AT2. Duplication of the AT1 receptor in rodents into At1a and b subtypes allows tissue-specific expression of the AT1b in adrenal and pituitary tissue. Adrenal expression of this receptor is increased in the offspring of rat mothers exposed to a low-protein diet and this is associated with the undermethylation of its promoter.
View Article and Find Full Text PDFIncreased hepatic gluconeogenesis maintains glycemia during fasting and has been considered responsible for elevated hepatic glucose output in type 2 diabetes. Glucose derived periportally via gluconeogenesis is partially taken up perivenously in perfused liver but not in adult rats whose mothers were protein-restricted during gestation (MLP rats)-an environmental model of fetal programming of adult glucose intolerance exhibiting diminished perivenous glucokinase (GK) activity. We now show that perivenous glucose uptake rises with increasing glucose concentration (0-8 mmol/l) in control but not MLP liver, indicating that GK is flux-generating.
View Article and Find Full Text PDF