Mesenchymal stem/stromal cells (MSCs) represent a promising cell source for research and therapeutic applications, but their restricted ex vivo propagation capabilities limit putative applications. Substantial self-renewing of stem cells can be achieved by reprogramming cells into induced pluripotent stem cells (iPSCs) that can be easily expanded as undifferentiated cells even in mass culture. Here, we investigated a differentiation protocol enabling the generation and selection of human iPSC-derived MSCs exhibiting relevant surface marker expression profiles (CD105 and CD73) and functional characteristics.
View Article and Find Full Text PDFEgg-oil (Charismon©) is known for its beneficial action in wound healing and other skin irritancies and its antibacterial activity. The physiological basis for these actions has been investigated using cells in culture: HaCaT-cells (immortalized human keratinocytes), human endothelial cells in culture (HUVEC), peripheral blood mononuclear lymphocytes (PBML) and a full thickness human skin model (FTSM). Emphasis was on the influence of egg-oil on cell migration and IL-8 production in HaCaT cells, respiration, mitochondrial membrane potential, reactive oxygen (ROS) production and proliferation in HUVEC and HaCaT cells, cytokine and interleukin production in PBML and UV-light induced damage of FTSM.
View Article and Find Full Text PDFMesenchymal stroma/stem cells (MSCs) represent a heterogenic cell population that can be isolated from various tissues of the body or can be generated from pluripotent stem cells by in vitro differentiation. Various promising pre-clinical and clinical studies suggest that MSCs might stimulate endogenous regeneration and/or act as anti-inflammatory agents, which could be of high therapeutic relevance for a number of diseases, including graft-versus-host disease after allogeneic hematopoietic stem cell transplantation, inflammatory bowel diseases, or some forms of liver failure. Notably, conflicting results of various studies illustrated that the source of MSCs, the cultivation condition, and the way of administration have important effects on the desired clinical effect.
View Article and Find Full Text PDFNucleic Acids Res
September 2010
Transcripts of NANOG and OCT4 have been recently identified in human t(4;11) leukemia and in a model system expressing both t(4;11) fusion proteins. Moreover, downstream target genes of NANOG/OCT4/SOX2 were shown to be transcriptionally activated. However, the NANOG1 gene belongs to a gene family, including a gene tandem duplication (named NANOG2 or NANOGP1) and several pseudogenes (NANOGP2-P11).
View Article and Find Full Text PDF