Background: Studying complexation between a wide variety of drugs and clay is of high importance in expanding the knowledge about controlled drug delivery and its exploitation. This study reports the use of isothermal calorimetry (ITC) in understanding the complexation process occurring between magnesium aluminium silicate (MAS) and metformin hydrochloride (MET), as a potentially controlled release drug delivery system.
Objectives: To fully characterise and understand the complexes formed between MAS and MET and how that might impact on controlled release systems.
Functionalized cyclodextrin molecules assemble into a wide variety of superstructures in solution, which are of interest for drug delivery and other nanomaterial and biomaterial applications. Here we use a combined simulation and experimental approach to probe the coassembly of siRNA and cationic cyclodextrin (c-CD) derivatives into a highly stable gene delivery nanostructure. The c-CD form supramolecular structures via interdigitation of their aliphatic tails, analogous to the formation of lipid bilayers and micelles.
View Article and Find Full Text PDF