Publications by authors named "Irina Dayanova"

Gold(I) complexes of LAuCl composition based on PN ligands, namely 1,5-diaza-3,7-diphosphacyclooctanes, containing ethylpyridyl substituents at the phosphorus atoms and sp- or sp-hybridized endocyclic nitrogen atoms were synthesized. The SCXRD analysis indicated the strong impact of the geometry of the nitrogen atom on the structure and conformational flexibility of the complexes. The -aryl substituted ligand with the planar endocyclic nitrogen atom provides higher flexibility of the complex and an ability to bind the solvent molecules in the "host-guest" mode, whereas that kind of behavior is forbidden for the complex with an -alkyl substituted ligand with a pyramidal nitrogen atom.

View Article and Find Full Text PDF

The work presents core-shell nanoparticles (NPs) built from the novel Cu(I) complexes with cyclic PN-ligands (1,5-diaza-3,7-diphosphacyclooctanes) that can visualize their entry into cancer and normal cells using a luminescent signal and treat cells by self-enhancing generation of reactive oxygen species (ROS). Variation of P- and N-substituents in the series of PN-ligands allows structure optimization of the Cu(I) complexes for the formation of the luminescent NPs with high chemical stability. The non-covalent modification of the NPs with triblock copolymer F-127 provides their high colloidal stability, followed by efficient cell internalization of the NPs visualized by their blue (⁓450 nm) luminescence.

View Article and Find Full Text PDF

Tertiary diethylpyridylphosphine was synthesized by the reaction of pyridylphosphine with bromoethane in a suberbasic medium. The reaction of phosphine with the copper(I) iodide led to the formation of a copper(I) coordination polymer, which, according to the X-ray diffraction data, has an intermediate structure with a copper-halide core between the octahedral and stairstep geometries of the CuI clusters. The obtained coordination polymer exhibits a green emission in the solid state, which is caused by the (M+X)LCT transitions.

View Article and Find Full Text PDF

A conformationally restricted P,N-ligand capable of the design of polynuclear copper(I) complexes was synthesized via the reaction of primary pyridylphosphine, paraformaldehyde, and benzhydrylamine. The reaction of the ligand with copper(I) iodide leads to the tetranuclear copper(I) complex with the octahedral type of copper-iodide core. Different orientation of coordination bonds of the ligands relative to the P,N -heterocyclic fragments and to the Cu I cores leads to the existence of two types of conformers of the complex with "compact" or "stretched" geometry of the Cu I cluster.

View Article and Find Full Text PDF

A synthetic method for a primary 2-(thiophen-2'-yl)ethylphosphine was developed. The reaction of thiophenylethylphosphine with paraformaldehyde and primary arylamines leads to the formation of cyclic bisphosphines, namely, 1,5-di(aryl)-3,7-bis(thiophenylethyl)-1,5-diaza-3,7-diphosphacyclooctane (aryl = phenyl, -tolyl). The obtained bisphosphines form cationic bis-P,P-chelate complexes with copper(I) tetrafluoroborate, which were structurally characterized by NMR spectroscopy, mass spectrometry, and elemental and XRD analyses.

View Article and Find Full Text PDF

The present work introduces a simple, electrostatically driven approach to engineered nanomaterial built from the highly cytotoxic [AuL] complex (Au, L = 1,5-bis(p-tolyl)-3,7-bis(pyridine-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP) ligand) and the pH-sensitive red-emitting [{ReQ}(OH)] (Re-Q, Q = S or Se) cluster units. The protonation/deprotonation of the Re-Q unit is a prerequisite for the pH-triggered assembly of Au and Re-Q into AuRe-Q colloids, exhibiting disassembly in acidic (pH = 4.5) conditions modeling a lysosomal environment.

View Article and Find Full Text PDF

Electrostatically driven self-assembly of [AuL] (L is cyclic PNNP ligand) with [{MoI}(L')] (L' = I, CHCOO) in aqueous solutions is introduced as facile route for combination of therapeutic and cellular contrasting functions within heterometallic colloids (Mo-Au). The nature of L' affects the size and aggregation behavior of crystalline Mo-Au aggregates, which in turn affect the luminescence of the cluster units incorporated into Mo-Au colloids. The spin trap facilitated electron spin resonance spectroscopy technique indicates that the level of ROS generated by Mo-Au colloids is also affected by their size.

View Article and Find Full Text PDF

The row of metallocyclic dinuclear gold(I) complexes with cyclic diphosphines, namely, P-pyridylethyl-substituted 1,5-diaza-3,7-diphosphacyclooctanes, has been obtained. Further interaction of the dinuclear gold(I) complexes with copper(I) iodide gave the first examples of hexanuclear Au/Cu complexes containing two unusual trinuclear AuICuI fragments. The structures of di- and hexanuclear complexes were confirmed by NMR spectroscopy, ESI mass spectrometry, elemental analysis, and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

The unique LCuI complexes containing two CuI units have been obtained via reaction of 1,5-diaza-3,7-diphosphacyclooctanes bearing ethylpyridyl substituents at phosphorus atoms with an excess of copper iodide. The structure of one of the complexes was confirmed by X-ray diffraction. It was shown that the complexes can exist in two crystalline phases with different parameters of the unit cell, which were detected by the PXRD data analyses.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioni5se34ogcv3t9u20li2frs03o6a1hi9j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once