Pediatric high-grade gliomas (pHGG) and pediatric diffuse midline gliomas (pDMG) are devastating diseases without durable and curative options. Although targeted immunotherapy has shown promise, the field lacks immunocompetent animal models to study these processes in detail. To achieve this, we developed a fully immunocompetent, genetically engineered mouse model (GEMM) for pDMG and pHGG that incorporates the glioma-associated antigen, interleukin 13 receptor alpha 2 (IL13RA2).
View Article and Find Full Text PDFBackground: Glioblastoma (GB) remains a formidable challenge in neuro-oncology, with immune checkpoint blockade (ICB) showing limited efficacy in unselected patients. We previously recently established that MAPK/ERK signaling is associated with overall survival following anti-PD-1 and anti-CTLA-4 treatment in recurrent GB. However, the causal relationship between MAPK/ERK signaling and susceptibility to ICB, as well as the mechanisms underlying this association, remain poorly understood.
View Article and Find Full Text PDFSTING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured.
View Article and Find Full Text PDFIn recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic.
View Article and Find Full Text PDFImmunoglobulin G4-related disease (IgG4-RD) is a rare autoimmune disorder with an unknown etiology. Using orthogonal immune profiling and automated sequential multiplexing, we found an enhanced frequency of activated circulating B cells, antigen-presenting myeloid cells in peripheral blood, and a distinct distribution of immune cells within the CNS lesions. Prohibitin-expressing CD138+ plasma B cells and CD11c+ dendritic cells have been found interacting with T cells resulting in irmnune cell activation within the lesion.
View Article and Find Full Text PDFChimeric antigen receptor (CAR) cell-based therapies have demonstrated limited success in solid tumors, including glioblastoma (GBM). GBMs exhibit high heterogeneity and create an immunosuppressive tumor microenvironment (TME). In addition, other challenges exist for CAR therapy, including trafficking and infiltration into the tumor site, proliferation, persistence of CARs once in the tumor, and reduced functionality, such as suboptimal cytokine production.
View Article and Find Full Text PDFInterleukin 13 receptor alpha 2 (IL13Rα2) is a relevant therapeutic target in glioblastoma (GBM) and other tumors associated with tumor growth and invasion. In a previous study, we demonstrated that protein tyrosine phosphatase 1B (PTP1B) is a key mediator of the IL-13/IL13Rα2 signaling pathway. PTP1B regulates cancer cell invasion through Src activation.
View Article and Find Full Text PDFA paucity of chemotherapeutic options for metastatic brain cancer limits patient survival and portends poor clinical outcomes. Using a CNS small-molecule inhibitor library of 320 agents known to be blood-brain barrier permeable and approved by the FDA, we interrogated breast cancer brain metastasis vulnerabilities to identify an effective agent. Metixene, an antiparkinsonian drug, was identified as a top therapeutic agent that was capable of decreasing cellular viability and inducing cell death across different metastatic breast cancer subtypes.
View Article and Find Full Text PDFBackground: Immunotherapeutic innovation is crucial for limited operability tumors. CAR T-cell therapy displayed reduced efficiency against glioblastoma (GBM), likely due to mutations underlying disease progression. Natural Killer cells (NKs) detect cancer cells despite said mutations - demonstrating increased tumor elimination potential.
View Article and Find Full Text PDFGlioblastoma (GBM) is a lethal brain tumor with limited therapeutic options. Bi-specific killer cell engagers (BiKEs) are novel immunotherapies designed to engage natural killer (NK) cells against cancer. We designed a BiKE molecule consisting of a single-domain CD16 antibody, an interleukin-15 linker, and a single-chain variable antibody against the glioma-associated antigen interleukin 13 receptor alpha 2 (IL13Rα2).
View Article and Find Full Text PDFAs a key component of the standard of care for glioblastoma, radiotherapy induces several immune resistance mechanisms, such as upregulation of CD47 and PD-L1. Here, leveraging these radiotherapy-elicited processes, we generate a bridging-lipid nanoparticle (B-LNP) that engages tumor-associated myeloid cells (TAMCs) to glioblastoma cells via anti-CD47/PD-L1 dual ligation. We show that the engager B-LNPs block CD47 and PD-L1 and promote TAMC phagocytic activity.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2023
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles.
View Article and Find Full Text PDFBackground: Chimeric antigen receptor (CAR) T cells have recently been demonstrated to extract and express cognate tumor antigens through trogocytosis. This process may contribute to tumor antigen escape, T cell exhaustion, and fratricide, which plays a central role in CAR dysfunction. We sought to evaluate the importance of this effect in epidermal growth factor receptor variant III (EGFRvIII) specific CAR T cells targeting glioma.
View Article and Find Full Text PDFGlioblastoma (GBM) remains a fatal diagnosis despite the current standard of care of maximal surgical resection, radiation, and temozolomide (TMZ) therapy. One aspect that impedes drug development is the lack of an appropriate model representative of the complexity of patient tumors. Brain organoids derived from cell culture techniques provide a robust, easily manipulatable, and high-throughput model for GBM.
View Article and Find Full Text PDFIntroduction: The immunosuppressive tumor microenvironment (TME) is a major barrier to the efficacy of chimeric antigen receptor T cells (CAR-T cells) in glioblastoma (GBM). Transgenic expression of IL15 is one attractive strategy to modulate the TME. However, at present, it is unclear if IL15 could be used to directly target myeloid-derived suppressor cells (MDSCs), a major cellular component of the GBM TME.
View Article and Find Full Text PDFImmunotherapy has emerged as a powerful strategy for halting cancer progression. However, primary malignancies affecting the brain have been exempt to this success. Indeed, brain tumors continue to portend severe morbidity and remain a globally lethal disease.
View Article and Find Full Text PDFNeurooncol Adv
August 2022
Glioblastoma (GBM) is the most devastating and aggressive brain tumor in adults. Hidden behind the blood-brain and blood-tumor barriers (BBTB), this invasive type of brain tumor is not readily accessible to nano-sized particles. Here we demonstrate that fluorescent indocarbocyanine lipids (ICLs: DiD, DiI) formulated in PEGylated lipid nanoparticle (PLN) exhibit highly efficient penetration and accumulation in GBM.
View Article and Find Full Text PDFBrain metastases are a leading cause of death in patients with breast cancer. The lack of clinical trials and the presence of the blood-brain barrier limit therapeutic options. Furthermore, overexpression of the human epidermal growth factor receptor 2 (HER2) increases the incidence of breast cancer brain metastases (BCBM).
View Article and Find Full Text PDFFaced with unique immunobiology and marked heterogeneity, treatment strategies for glioblastoma require therapeutic approaches that diverge from conventional oncological strategies. The selection and prioritization of targeted and immunotherapeutic strategies will need to carefully consider these features and companion biomarkers developed alongside treatment strategies to identify the appropriate patient populations. Novel clinical trial strategies that interrogate the tumor microenvironment for drug penetration and target engagement will inform go/no-go later-stage clinical studies.
View Article and Find Full Text PDFBackground: Malignant glioma is the most common and lethal primary brain tumour, with dismal survival rates and no effective treatment. We examined the safety and activity of NSC-CRAd-S-pk7, an engineered oncolytic adenovirus delivered by neural stem cells (NSCs), in patients with newly diagnosed high-grade glioma.
Methods: This was a first-in-human, open-label, phase 1, dose-escalation trial done to determine the maximal tolerated dose of NSC-CRAd-S-pk7, following a 3 + 3 design.
Tumor trafficking of liposomes is routinely monitored via fluorescence microscopy and imaging. To investigate whether an accumulation of liposomes depends on the type of fluorescent label, we prepared PEGylated liposomes dual-labeled with indocarbocyanine lipids (ICLs: DiD or DiI) and fluorescent phospholipids (FPLs: Cy3-DSPE or Cy5-DSPE) with similar cyanine headgroups but different spectra. Using confocal microscopy and imaging, we compared tumor extravasation and accumulation of ICLs and FPLs.
View Article and Find Full Text PDFIntroduction: Labeling single domain antibody fragments (sdAbs) with F is an attractive strategy for immunoPET. Earlier, we developed a residualizing label, N-succinimidyl 3-((4-(4-fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([F]RL-I), synthesized via a click reaction for labeling sdAbs with F, that has attractive features but suffered from modest radiochemical yields and suboptimal hydrophobicity. Herein, we have evaluated the potential utility of an analogous agent, N-succinimidyl 3-(1-(2-(2-(2-(2-[F]fluoroethoxy)ethoxy)ethoxy)ethyl)-1H-1,2,3-triazol-4-yl)-5-(guanidinomethyl)benzoate ([F]SFETGMB; [F]RL-III) designed to address these limitations.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by an aberrant metabolic phenotype with high metastatic capacity, resulting in poor patient prognoses and low survival rates. We designed a series of novel Au cyclometalated prodrugs of energy-disrupting Type II antidiabetic drugs namely, metformin and phenformin. Prodrug activation and release of the metformin ligand was achieved by tuning the cyclometalated Au fragment.
View Article and Find Full Text PDF