Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion.
View Article and Find Full Text PDFWe studied the gene-expression patterns in specimens of tumor and peritumor tissue biopsies of 26 patients with head and neck carcinomas depending on smoking status. Histological and immunohistochemical examinations verified that all tumors belonged to the "classical" subgroup of head and neck carcinomas, and the HPV-negative tumor status was confirmed. The expression of 28 tumor-associated genes determined by RT-PCR was independent of patients' sex or age, TNM status, degree of differentiation, or tissue localization.
View Article and Find Full Text PDFFor several decades now, researchers have been trying to answer the demand of clinical oncologists to create an ideal preclinical model of head and neck squamous cell carcinoma (HNSCC) that is accessible, reproducible, and relevant. Over the past years, the development of cellular technologies has naturally allowed us to move from primitive short-lived primary 2D cell cultures to complex patient-derived 3D models that reproduce the cellular composition, architecture, mutational, or viral load of native tumor tissue. Depending on the tasks and capabilities, a scientific laboratory can choose from several types of models: primary cell cultures, immortalized cell lines, spheroids or heterospheroids, tissue engineering models, bioprinted models, organoids, tumor explants, and histocultures.
View Article and Find Full Text PDFBackground: Splenectomy may lead to severe postoperative complications, including sepsis and cancers. A possible solution to this problem is heterotopic autotransplantation of the spleen. Splenic autografts rapidly restore the regular splenic microanatomy in model animals.
View Article and Find Full Text PDFPolymers (Basel)
October 2022
Composite biocompatible scaffolds, obtained using the electrospinning (ES) technique, are highly promising for biomedical application thanks to their high surface area, porosity, adjustable fiber diameter, and permeability. However, the combination of synthetic biodegradable (such as poly(ε-caprolactone) PCL) and natural (such as gelatin Gt) polymers is complicated by the problem of low compatibility of the components. Previously, this problem was solved by PCL grafting and/or Gt cross-linking after ES molding.
View Article and Find Full Text PDFCreation of scaffold-based tissue-engineered constructs (SB TECs) is costly and requires coordinated qualified efforts. Cryopreservation enables longer shelf-life for SB TECs while enormously enhancing their availability as medical products. Regenerative treatment with cryopreserved SB TECs prepared in advance (possibly prêt-à-porter) can be started straight away on demand.
View Article and Find Full Text PDFMacrophage populations in most mammalian organs consist of cells of different origin. Resident macrophages originate from erythromyeloid precursors of the yolk sac wall; maintenance of the numbers of such macrophages in postnatal ontogenesis is practically independent of bone marrow haematopoiesis. The largest populations of the resident macrophages of embryonic origin are found in the central nervous system (microglia) and liver (Kupffer cells).
View Article and Find Full Text PDFThe pancreas became one of the first objects of regenerative medicine, since other possibilities of dealing with the pancreatic endocrine insufficiency were clearly exhausted. The number of people living with diabetes mellitus is currently approaching half a billion, hence the crucial relevance of new methods to stimulate regeneration of the insulin-secreting β-cells of the islets of Langerhans. Natural restrictions on the islet regeneration are very tight; nevertheless, the islets are capable of physiological regeneration β-cell self-replication, direct differentiation of multipotent progenitor cells and spontaneous α- to β- or δ- to β-cell conversion (trans-differentiation).
View Article and Find Full Text PDFFunctional and anatomical connection between the liver and the spleen is most clearly manifested in various pathological conditions of the liver (cirrhosis, hepatitis). The mechanisms of the interaction between the two organs are still poorly understood, as there have been practically no studies on the influence exerted by the spleen on the normal liver. Mature male Sprague-Dawley rats of 250-260 g body weight, 3 months old, were splenectomized.
View Article and Find Full Text PDFIn the central nervous system and in the liver, the macrophage populations are represented exclusively by descendants of the hematopoietic progenitor cells of the yolk sac. The reasons for such differential distribution of macrophages are not fully understood. We found that, as can be judged by corresponding changes in the expression of CD86 and CD163 markers, the transient macrophages of monocytic lineage are more sensitive to activating stimuli.
View Article and Find Full Text PDFThis study delves into possible mechanisms underlying the stimulating influence of UC-MSCs transplantation on functional and structural recovery of ischemic skeletal muscles. Limb ischemia was created in Sprague-Dawley rats by excision of femoral and popliteal arteries. Allogeneic rat PKH26-labeled UC-MSCs were administered by direct intramuscular injection.
View Article and Find Full Text PDFIn this review we present current evidence on the possibility of umbilical cord tissue cryopreservation for subsequent clinical use. Protocols for obtaining umbilical cord-derived vessels, Wharton's jelly-based grafts, multipotent stromal cells, and other biomedical products from cryopreserved umbilical cords are highlighted, and their prospective clinical applications are discussed. Examination of recent literature indicates we should expect high demand for cryopreservation of umbilical cord tissues in the near future.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2019
The objective of this study was to evaluate physical, mechanical, and biological properties of the polydioxanone (PDO) monofilament meshes and polyglycolide (PGA) polyfilament meshes in comparison with Permacol implants. In rat experimental model, a 1.5 × 2.
View Article and Find Full Text PDFBackground: In many clinical cases of extensive liver resection (e.g. due to malignancy), the residual portion is too small to maintain the body homeostasis.
View Article and Find Full Text PDFAim: To investigate the influence of the umbilical cord-derived multipotent stromal cells (MSCs) on recovery of the liver after the subtotal resection, that is, removal of 80% of the organ mass, a renowned model of the small-for-size liver remnant syndrome.
Methods: The MSCs were obtained from the intervascular tissue of umbilical cords, dissected from rat fetuses, by the explant culture technique. The vital labeling of MSCs with РКН26 was carried out on the 3rd passage.
The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.
View Article and Find Full Text PDFProliferation of hepatocytes is known to be the main process in the hepatectomy-induced liver regrowth; however, in cases of extensive loss it may be insufficient for complete recovery unless supported by some additional sources e.g. mobilization of undifferentiated progenitors.
View Article and Find Full Text PDFBackground: Mesenchymal stromal/stem cells derived from human umbilical cord (UC-MSCs) uniquely combine properties of embryonic and postnatal MSCs and may be the most acceptable, safe, and effective source for allogeneic cell therapy e.g. for therapeutic angiogenesis.
View Article and Find Full Text PDFAllogeneic multipotent stromal cells were previously thought to be poorly recognized by host immune system; the prolonged survival in host environments was explained by their immune privileged status. As long as the concept is currently reconsidered, the routes of elimination of allogeneic multipotent stromal cells by host immunity must be taken into account. This is necessary for correct comprehension of their therapeutic action.
View Article and Find Full Text PDFCell therapy is increasingly recognized as a beneficial practice in various cardiac conditions, but its fundamentals remain largely unclear. The fates of transplanted multipotent stromal cells in postinfarction cardiac microenvironments are particularly understudied. To address this issue, labeled multipotent stromal cells were infused into rat myocardium at day 30 after myocardial infarction, against the background of postinfarction cardiosclerosis.
View Article and Find Full Text PDF