Publications by authors named "Irimia D"

Circulating monocytes contribute to the defense against pathogens and play a crucial role in maintaining immune homeostasis. While there is substantial evidence regarding the triggers of monocyte activation, our understanding of how monocyte function is restored toward homeostasis after activation remains limited. Here, we assessed the changes in monocyte anisocytosis upon activation in blood, measured by monocyte distribution width (MDW), a biomarker for sepsis.

View Article and Find Full Text PDF

In tissues, neutrophils neutralize Candida albicans through phagocytosis and delay C. albicans hyphae growth by deploying neutrophil extracellular traps (NETs). However, in the bloodstream, the dynamic interactions between NETs and C.

View Article and Find Full Text PDF

Background: Early, accurate determination of disease severity in an emergency setting is paramount for improving patient outcomes and healthcare costs. Monocyte anisocytosis, quantified as monocyte distribution width (MDW), has been shown to correspond with immune dysregulation. We hypothesize that MDW is broadly associated with illness severity related to sepsis and serious infection in children.

View Article and Find Full Text PDF

Unlabelled: Neutrophils communicate with one another and amplify their destructive power through swarming, a collective process that synchronizes the activities of multiple neutrophils against one target. The sequence of activities contributing to swarming against clusters of fungi has been recently uncovered. However, the molecular signals controlling the neutrophils' activities during the swarming process are just emerging.

View Article and Find Full Text PDF

Oral mucosal colonization by C. albicans (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone use and neutropenia are risk factors for invasive mucosal fungal infections, however the mechanisms are poorly understood.

View Article and Find Full Text PDF

Background & Aims: Patients with acutely decompensated (AD) cirrhosis are immunocompromised and particularly susceptible to infections. This study investigated the immunomodulatory actions of albumin by which this protein may lower the incidence of infections.

Methods: Blood immunophenotyping was performed in 11 patients with AD cirrhosis and 10 healthy volunteers (HV).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how mechanical confinement affects the migration of breast cancer (BC) cells, linking this to specific genomic signals and behaviors.
  • Researchers used 3D microfluidic devices to analyze the migration of seven BC cell lines and found that 715 genes correlated with their migratory abilities, highlighting TNF-α as a significant regulator.
  • The TNF-α/TNFR1 signaling pathway was identified as crucial for the migration of triple-negative, mesenchymal-like BC cells, suggesting it could be an effective target for therapy to combat tumor spread and metastasis.
View Article and Find Full Text PDF

Oscillatory flow in confined spaces is central to understanding physiological flows and rational design of synthetic periodic-actuation based micromachines. Using theory and experiments on oscillating flows generated through a laser-induced cavitation bubble, we associate the dynamic bubble size (fluid velocity) and bubble lifetime to the laser energy supplied-a control parameter in experiments. Employing different channel cross-section shapes, sizes and lengths, we demonstrate the characteristic scales for velocity, time and energy to depend solely on the channel geometry.

View Article and Find Full Text PDF

Neutrophils collectively migrate to sites of injury and infection. How these swarms are coordinated to ensure the proper level of recruitment is unknown. Using an ex vivo model of infection, we show that human neutrophil swarming is organized by multiple pulsatile chemoattractant waves.

View Article and Find Full Text PDF

Systemic neutrophil dysregulation contributes to atherosclerosis pathogenesis, and restoring neutrophil homeostasis may be beneficial for treating atherosclerosis. Herein, we report that a homeostatic resolving subset of neutrophils exists in mice and humans characterized by the low expression of TRAM, correlated with reduced expression of inflammatory mediators (leukotriene B4 [LTB4] and elastase) and elevated expression of anti-inflammatory resolving mediators (resolvin D1 [RvD1] and CD200R). TRAM-deficient neutrophils can potently improve vascular integrity and suppress atherosclerosis pathogenesis when adoptively transfused into recipient atherosclerotic animals.

View Article and Find Full Text PDF

The recovery of patients after severe burns is a long and complex process. Genomic analysis of white blood cells from burn and trauma patients revealed excessive and prolonged innate immune activation in patients with complicated outcomes. However, translating this knowledge into practical biomarkers has not been possible yet.

View Article and Find Full Text PDF

Inhibition of Bruton's tyrosine kinase (BTK) through covalent modifications of its active site (e.g., ibrutinib [IBT]) is a preferred treatment for multiple B cell malignancies.

View Article and Find Full Text PDF

Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision.

View Article and Find Full Text PDF

Oral mucosal colonization by (Ca) is benign in healthy people but progresses to deeper infection known as oropharyngeal candidiasis (OPC) that may become disseminated when combined with immunosuppression. Cortisone-induced immunosuppression is a well-known risk factor for OPC, however the mechanism by which it permits infection is poorly understood. Neutrophils are the primary early sentinels preventing invasive fungal growth, and here we identify that neutrophil functional complexes known as swarms are crucial for preventing Ca invasion which are disrupted by cortisone.

View Article and Find Full Text PDF

Brain infiltration of peripheral immune cells and their interactions with brain-resident cells may contribute to Alzheimer's disease (AD) pathology. To examine these interactions, in the present study we developed a three-dimensional human neuroimmune axis model comprising stem cell-derived neurons, astrocytes and microglia, together with peripheral immune cells. We observed an increase in the number of T cells (but not B cells) and monocytes selectively infiltrating into AD relative to control cultures.

View Article and Find Full Text PDF

Non-photochemical laser-induced nucleation (NPLIN) has emerged as a promising primary nucleation control technique offering spatiotemporal control over crystallization with potential for polymorph control. So far, NPLIN was mostly investigated in milliliter vials, through laborious manual counting of the crystallized vials by visual inspection. Microfluidics represents an alternative to acquiring automated and statistically reliable data.

View Article and Find Full Text PDF

Neutrophils exhibit self-amplified swarming to sites of injury and infection. How swarming is controlled to ensure the proper level of neutrophil recruitment is unknown. Using an model of infection, we find that human neutrophils use active relay to generate multiple pulsatile waves of swarming signals.

View Article and Find Full Text PDF

Introduction: Although SARS-CoV-2 infection can lead to severe COVID-19 in children, the role of biomarkers for assessing the risk of progression to severe disease is not well established in the pediatric population. Given the differences in monocyte signatures associated with worsening COVID-19 in adults, we aimed to determine whether monocyte anisocytosis early in the infectious course would correspond with increasing severity of COVID-19 in children.

Methods: We performed a multicenter retrospective study of 215 children with SARS-CoV-2 infection, Multisystem Inflammatory Syndrome in Children (MIS-C), convalescent COVID-19, and healthy age-matched controls to determine whether monocyte anisocytosis, quantified by monocyte distribution width (MDW) on complete blood count, was associated with increasing severity of COVID-19.

View Article and Find Full Text PDF

Recent studies uncovered that , a common, opportunistic bacterium in the oral cavity, is associated with a growing number of systemic diseases, ranging from colon cancer to Alzheimer's disease. However, the pathological mechanisms responsible for this association are still poorly understood. Here, we leverage recent technological advances to study the interactions between Fn and neutrophils.

View Article and Find Full Text PDF

Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision.

View Article and Find Full Text PDF

Megakaryocytes (MKs) are precursors to platelets, the second most abundant cells in the peripheral circulation. However, while platelets are known to participate in immune responses and play significant functions during infections, the role of MKs within the immune system remains largely unexplored. Histological studies of sepsis patients identified increased nucleated CD61 cells (MKs) in the lungs, and CD61 staining (likely platelets within microthrombi) in the kidneys, which correlated with the development of organ dysfunction.

View Article and Find Full Text PDF

Neutrophils are the most numerous white blood cells and are the first to arrive at sites of inflammation and infection. Thus, neutrophil behavior provides a comprehensive biomarker for antimicrobial defenses. Several microfluidic tools have been developed to test neutrophil chemotaxis, phagocytosis, extrusion of extracellular traps, Traditional tools rely on purified neutrophil samples, which require lengthy and expensive isolation procedures from large volumes of blood.

View Article and Find Full Text PDF

Maintaining persistent migration in complex environments is critical for neutrophils to reach infection sites. Neutrophils avoid getting trapped, even when obstacles split their front into multiple leading edges. How they re-establish polarity to move productively while incorporating receptor inputs under such conditions remains unclear.

View Article and Find Full Text PDF