We recently developed a database for hexaploid wheat QTL (WheatQTLdb; www.wheatqtldb.net), which included 11,552 QTL affecting various traits of economic importance.
View Article and Find Full Text PDFIn wheat, multiple disease resistance meta-QTLs (MDR-MQTLs) and underlying candidate genes for the three rusts were identified which may prove useful for development of resistant cultivars. Rust diseases in wheat are a major threat to global food security. Therefore, development of multiple disease-resistant cultivars (resistant to all three rusts) is a major goal in all wheat breeding programs worldwide.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
March 2022
Unlabelled: Majority of cereals are deficient in essential micronutrients including grain iron (GFe) and grain zinc (GZn), which are therefore the subject of research involving biofortification. In the present study, 11 meta-QTLs (MQTLs) including nine novel MQTLs for GFe and GZn contents were identified in wheat. Eight of these 11 MQTLs controlled both GFe and GZn.
View Article and Find Full Text PDFIn bread wheat, meta-QTL analysis was conducted using 353 QTLs that were available from earlier studies. When projected onto a dense consensus map comprising 76,753 markers, only 184 QTLs with the required information, could be utilized leading to identification of 61 MQTLs spread over 18 of the 21 chromosomes (barring 5D, 6D and 7D). The range for mean R (PVE %) was 1.
View Article and Find Full Text PDFDuring the last three decades, QTL analysis in wheat has been conducted for a variety of individual traits, so that thousands of QTL along with the linked markers, their genetic positions and contribution to phenotypic variation (PV) for concerned traits are now known. However, no exhaustive database for wheat QTL is currently available at a single platform. Therefore, the present database was prepared which is an exhaustive information resource for wheat QTL data from the published literature till May, 2020.
View Article and Find Full Text PDFSET domain genes (SDGs) that are involved in histone methylation have been examined in many plant species, but have never been examined in bread wheat; the histone methylation caused due to SDGs is associated with regulation of gene expression at the transcription level. We identified a total of 166 bread wheat TaSDGs, which carry some interesting features including the occurrence of tandem/interspersed duplications, SSRs (simple sequence repeats), transposable elements, lncRNAs and targets for miRNAs along their lengths and transcription factor binding sites (TFBS) in the promoter regions. Only 130 TaSDGs encoded proteins with complete SET domain, the remaining 36 proteins had truncated SET domain.
View Article and Find Full Text PDFPhysiol Mol Biol Plants
August 2020