The paper presents results of water quality monitoring conducted within the frame of the MONSUL project. The main goal was to analyse and assess the impact of factors determining the ecological status of a dam reservoir on the basis of the Sulejow Reservoir located in Central Poland. The project implementation plan based on comprehensive research-based monitoring covered the following parameters characterising the ecological potential of the reservoir: water temperature, pH, oxygen concentration, chlorophyll “a” and blue-green algae, concentration of ammonium ion, nitrate nitrogen phosphates as well as total organic carbon, chemical oxygen demand and biochemical oxygen demand.
View Article and Find Full Text PDFObjectives: Our goal was to present a novel non-invasive approach for assessment of aortic wall displacement to describe its biomechanical properties during the cardiac cycle.
Methods: The fluid-structure interaction (FSI) technique was used to reconstruct aortic wall displacement based on computed tomography angiography and 2-dimensional speckle-tracking technique (2DSTT) data collected from 20 patients [10 with healthy aortas (AA) and 10 with abdominal aortic aneurysms (AAAs)]. The mechanical properties of the wall of the aorta were described by the Yeoh hyperelastic materials model with α and β parameters, and wall displacement was determined with 2DSTT.
Currently, studies connected with Computational Fluid Dynamic (CFD) techniques focus on assessing hemodynamic of blood flow in vessels in different conditions e.g. after stent-graft's placement.
View Article and Find Full Text PDFThe paper presents an application of the FSI technique to determine hemodynamics in the abdominal aorta (AA). To establish boundary conditions for the FSI study, MR anatomical data and 4D MRI velocity-mapping data (in three blood flow velocity directions and time) were collected to acquire realistic geometry of the AA and blood velocity. The mechanical parameters of the patient-specific aortic wall were applied in FSI simulations to describe wall mechanics and blood flow in the AA.
View Article and Find Full Text PDFHere we present a 3D kinetic model of thrombus formation in an endovascular prosthesis after implantation in an abdominal aorta with an aneurysm. The computational fluid dynamic technique (CFD) was used to determine the process of thrombus formation and growth in the stent-graft on the basis of the medical data from computed tomography angiography and Doppler ultrasound examination of 10 patients. The Quemada model was used to describe rheological properties of blood.
View Article and Find Full Text PDFIn this study, a fluid-structure interaction analysis based on the application of patient-specific mechanical parameters of the aneurismal walls was carried out to predict the rupture side during an abdominal aortic aneurysm (AAA). Realistic geometry of the aneurysm was reconstructed from CT data acquired from the patient, and patient-specific flow conditions were applied as boundary conditions. A newly developed non-invasive methodology for determining the mechanical parameters of the patient-specific aortic wall was employed to simulate realistic aortic wall behaviors.
View Article and Find Full Text PDFThermal inactivation is suspected to be a limiting factor for use of glucoamylase in starch saccharification at elevated temperatures. Thus, inactivation of the enzyme has been studied in the presence of reagents (enzyme, substrate and product in wide range of concentrations, and moderate stirring). The influence of substrate and glucose as stability modulators showed the complexity of the studied system.
View Article and Find Full Text PDF