Publications by authors named "Ireneusz Szachogluchowicz"

This study investigates the microstructural effects of process parameters on Ti6Al4V alloy produced via powder bed fusion (PBF) using laser beam melting (LB/M) technology. The research focuses on how variations in laser power, exposure velocity, and hatching distance influence the final material's porosity, microhardness, and microstructure. To better understand the relationships between process parameters, energy density, and porosity, a simple mathematical model was developed.

View Article and Find Full Text PDF

Optoelectronic components are crucial across various industries. They benefit greatly from advancements in 3D printing techniques that enable the fabrication of intricate parts. Among these techniques, Material Extrusion (MEX) stands out for its simplicity and cost-effectiveness.

View Article and Find Full Text PDF

This study investigates the influence of a magnetic field on the microstructure and properties of AlO-Ni composites fabricated via centrifugal slip casting at 1500 rpm. AlO and Ni powders were combined with water and deflocculants, homogenized, and then cast into a porous plaster mold surrounded by Nd-Fe-B magnets. The resulting composites, sintered in a reducing atmosphere, exhibited a three-zone structure with varying Ni content due to the combined effects of the magnetic field and centrifugal force.

View Article and Find Full Text PDF

This paper shows the three-point bending strength analysis of a composite material consisting of polyamide doped with chopped carbon fiber and reinforced with continuous carbon fiber produced by means of the material extrusion (MEX) additive manufacturing technique. For a comparison, two types of specimens were produced: unreinforced and continuous fiber-reinforced (CFR) with the use of carbon fiber. The specimens were fabricated in two orientations that assure the highest strength properties.

View Article and Find Full Text PDF

The material extrusion (MEX) method utilizing highly filled metal filament presents an alternative to advanced additive metal manufacturing technologies. This process enables the production of metal objects through deposition and sintering, which is particularly attractive compared to powder bed fusion (PBF) technologies employing lasers or high-power electron beams. PBF requires costly maintenance, skilled operators, and controlled process conditions, whereas MEX does not impose such requirements.

View Article and Find Full Text PDF

The manuscript presents the results of butt joining of 3-millimeter-thick AlCu4Mg1 alloy sheets using the FSW (friction stir welding) and UWFSW (underwater friction stir welding) methods. The aim of the research is to verify the influence of the water environment on the FSW friction welding process. The article checked three sets of joint parameters.

View Article and Find Full Text PDF

Cementitious-glass composite bricks (CGCBs) with 3D-printed reinforcement structures made of PET-G could be an innovative production method that relies on recycling glass waste (78%) and PET-G (8%). These bricks offer a promising solution for the construction industry, which has a significant impact on climate change due to its greenhouse gas emissions and extensive use of natural aggregates. The approach presented in this article serves as an alternative to using conventional building materials that are not only costlier but also less environmentally friendly.

View Article and Find Full Text PDF

In this study, the research on 316L steel manufactured additively using two commercially available techniques, Material Extrusion (MEX) and Laser Powder Bed Fusion of Metals (PBF-LB/M), were compared. The additive manufacturing (AM) process based on powder bed synthesis is of great interest in the production of metal parts. One of the most interesting alternatives to PBF-LB/M, are techniques based on material extrusion due to the significant initial cost reduction.

View Article and Find Full Text PDF

The paper shows the results related to regeneration possibilities analysis of a damaged slider removed from a hydraulic splitter that was repaired using additive manufacturing (AM), laser-based powder bed fusion of metals (PBF-LB/M) technology. The results demonstrate the high quality of the connection zone between the original part and the regenerated zone. The hardness measurement conducted at the interface between the two materials indicated a significant increase equal to 35% by using the M300 maraging steel, as a material for regeneration.

View Article and Find Full Text PDF

This study provides an alternative to traditional masonry materials: a cement-glass composite brick (CGCB), with a printed polyethylene terephthalate glycol (PET-G) internal scaffolding (gyroidal structure). This newly designed building material consists of 86% waste (78% glass waste, and 8% recycled PET-G). It can respond to the construction market's needs and provide a cheaper alternative to traditional materials.

View Article and Find Full Text PDF

An ongoing growth of the available materials dedicated to additive manufacturing (AM) significantly extends the possibilities of their usage in many applications. A very good example is 20MnCr5 steel which is very popular in conventional manufacturing technologies and shows good processability in AM processes. This research takes into account the process parameter selection and torsional strength analysis of AM cellular structures.

View Article and Find Full Text PDF

In this investigation, three different explosive materials have been used to improve the properties of titanium grade 2: ammonal, emulsion explosives, and plastic-bonded explosives. In order to establish the influence of explosive hardening on the properties of the treated alloys, tests were conducted, including microhardness testing, microstructure analysis, and tensile and corrosion tests. It has been found that it is possible to achieve a 40% increase in tensile strength using a plastic explosive (PBX) as an explosive material.

View Article and Find Full Text PDF

With the development and popularization of additive manufacturing, attempts have been made to implement this technology into the production processes of machine parts, including gears. In the case of the additive manufacturing of gears, the availability of dedicated materials for this type of application is low. This paper summarizes the results of research on the implementation of 21NiCrMo2 low-alloy steel, which is conventionally used to produce gears as a feedstock in the PBF-LB/M process.

View Article and Find Full Text PDF

The research shows the comparison between two types of polyamide-based (PA) composites and pure, base material. The conducted analysis describes how the additions of carbon fibers and glass microbeads affect the material's properties and its behavior during the bending tests. All samples have been tested in the three main directions available during the FFF process.

View Article and Find Full Text PDF

The significant growth of Additive Manufacturing (AM), visible over the last ten years, has driven an increase in demand for small gradation metallic powders of a size lower than 100 µm. Until now, most affordable powders for AM have been produced using gas atomization. Recently, a new, alternative method of powder production based on ultrasonic atomization with melting by electric arc has appeared.

View Article and Find Full Text PDF

The paper presents results of investigations of welding sheets of AA2519-Ti6Al4V, a difficult-to-joint components materials, produced by explosive welding with a thin technological interlayer of AA1050. The joining process leads to the formation of intermetalics in the vicinity of joint and generates significant residual stresses. In the next step the laminate was subjected to a heat treatment process in order to improve the mechanical properties by precipitation hardening.

View Article and Find Full Text PDF

The present paper aims to analyze the influence of process parameters (tool traverse speed and tool rotational speed) on the macrostructure, microhardness, and mechanical properties of dissimilar friction stir welded (FSW) butt joints. Nine combinations of FSW parameters welded joints of aluminum alloys 7020-T651 and 5083-H111 were characterized. Plates in 5 mm thickness were welded using the FSW method as dissimilar joints with three values of tool rotation parameters (400, 800, and 1200 rpm) and three welding speeds (100, 200, 300 mm/min).

View Article and Find Full Text PDF

In this paper, the influence of disinfection on structural and mechanical properties of additive manufactured (AM) parts was analyzed. All AM parts used for a fight against COVID19 were disinfected using available methods-including usage of alcohols, high temperature, ozonation, etc.-which influence on AM parts properties has not been sufficiently analyzed.

View Article and Find Full Text PDF

Significant growth in knowledge about metal additive manufacturing (AM) affects the increase of interest in military solutions, where there is always a need for unique technologies and materials. An important section of materials in the military are those dedicated to armour production. An AM material is characterised by different behaviour than those conventionally made, especially during more dynamic loading such as ballistics testing.

View Article and Find Full Text PDF

The paper is a project continuation of the examination of the additive-manufactured 316L steel obtained using different process parameters and subjected to different types of heat treatment. This work contains a significant part of the research results connected with material analysis after low-cycle fatigue testing, including fatigue calculations for plastic metals based on the Morrow equation and fractures analysis. The main aim of this research was to point out the main differences in material fracture directly after the process and analyze how heat treatment affects material behavior during low-cycle fatigue testing.

View Article and Find Full Text PDF

Additive manufacturing is one of the most popular technological processes and is being considered in many research works, a lot of which are related to thin-walled parts analysis. There are many cases where different part geometries were manufactured using the same process parameters. That kind of approach often causes different porosity and surface roughness values in the geometry of each produced part.

View Article and Find Full Text PDF

The aim of this research was to examine the mechanical and fatigue properties of friction stir welded Sc-modified 5 mm thick AA2519-T62 extrusion. The joint was obtained using the following parameters: 800 rpm tool rotation speed, 100 mm/min tool traverse speed, 17 kN axial, and MX Triflute as a tool. The investigation has involved microstructure observations, microhardness distribution analysis, tensile test with digital image correlation technique, observations of the fracture surface, measurements of residual stresses, low cycle fatigue testing, and fractography.

View Article and Find Full Text PDF

Explosively welded layered materials made of (a) an AA2519 aluminum alloy (AlCuMgMn + ZrSc), (b) titanium alloy Ti6Al4V and (c) an intermediate layer composed of a thin aluminum alloyed AA1050 layer are considered herein. This study presents test results connected to measurement science including microstructural observations of the material combined with the explosive method, and a basic analysis of the strength properties based on microhardness and tensile tests. Owing to the joint's special manufacturing conditions, the laminate was subjected to deformation measurements with the digital image correlation (DIC) method.

View Article and Find Full Text PDF

In this study, we analyzed the mechanical properties of selectively laser melted (SLM) steel obtained via different modifications during and after the manufacturing process. The aim was to determine the effects of precipitation heat treatment on the mechanical properties of elements additively manufactured using three different process parameters. Some samples were additionally obtained using hot isostatic pressing (HIP), while some were treated using two different types of heat treatment and a combination of those two processes.

View Article and Find Full Text PDF

The effects of build orientation and heat treatment on the crack growth behavior of 316L stainless steel (SS) fabricated via a selective laser melting additive manufacturing process were investigated. Available research results on additively manufactured metallic parts still require a substantial expansion. The most important issue connected with the metal properties after additive manufacturing are the high anisotropy properties, especially from the fatigue point of view.

View Article and Find Full Text PDF