During early vertebrate development, signals from a special region of the embryo, the organizer, can redirect the fate of non-neural ectoderm cells to form a complete, patterned nervous system. This is called neural induction and has generally been imagined as a single signalling event, causing a switch of fate. Here, we undertake a comprehensive analysis, in very fine time course, of the events following exposure of competent ectoderm of the chick to the organizer (the tip of the primitive streak, Hensen's node).
View Article and Find Full Text PDFThe early stages of development of the chick embryo, leading to primitive streak formation (the start of gastrulation), have received renewed attention recently, especially for studies of the mechanisms of large-scale cell movements and those that position the primitive streak in the radial blastodisc. Over the long history of chick embryology, the terminology used to define different regions has been changing, making it difficult to relate studies to each other. To resolve this objectively requires precise definitions of the regions based on anatomical and functional criteria, along with a systematic molecular map that can be compared directly to the functional anatomy.
View Article and Find Full Text PDFThe formation of body segments (somites) in vertebrate embryos is accompanied by molecular oscillations (segmentation clock). Interaction of this oscillator with a wave traveling along the body axis (the clock-and-wavefront model) is generally believed to control somite number, size, and axial identity. Here we show that a clock-and-wavefront mechanism is unnecessary for somite formation.
View Article and Find Full Text PDFCalcium fluxes have been implicated in the specification of the vertebrate embryonic nervous system for some time, but how these fluxes are regulated and how they relate to the rest of the neural induction cascade is unknown. Here we describe Calfacilitin, a transmembrane calcium channel facilitator that increases calcium flux by generating a larger window current and slowing inactivation of the L-type CaV1.2 channel.
View Article and Find Full Text PDFIn Xenopus, the animal cap is very sensitive to BMP antagonists, which result in neuralization. In chick, however, only cells at the border of the neural plate can be neuralized by BMP inhibition. Here we compare the two systems.
View Article and Find Full Text PDFNeural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFbeta inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2.
View Article and Find Full Text PDF