The CD3epsilon subunit of the T cell receptor (TCR) complex undergoes a conformational change upon ligand binding that is thought to be important for the activation of T cells. To study this process, we built a molecular dynamics model of the transmission of the conformational change within the ectodomains of CD3. The model showed that the CD3 dimers underwent a stiffening effect that was funneled to the base of the CD3epsilon subunit.
View Article and Find Full Text PDFWe have studied the inhibitory effect of a CD4 chimera (CD4epsilon15) on HIV replication. This chimera is retained in the endoplasmic reticulum and traps the HIV envelope precursor gp160, preventing its maturation. Retroviral expression of the chimera strongly inhibited HIV replication even when it is expressed by only a minority of the T cell population.
View Article and Find Full Text PDFTCR gene therapy is adversely affected by newly formed TCRalphabeta heterodimers comprising exogenous and endogenous TCR chains that dilute expression of transgenic TCRalphabeta dimers and are potentially self-reactive. We have addressed TCR mispairing by using a modified two-chain TCR that encompasses total human CD3zeta with specificities for three different Ags. Transfer of either TCRalpha:CD3zeta or beta:CD3zeta genes alone does not result in surface expression, whereas transfer of both modified TCR chains results in high surface expression, binding of peptide-MHC complexes and Ag-specific T cell functions.
View Article and Find Full Text PDF